Aufgabenbeispiele von mit Substitution

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -18 x 2 +81 = 0

Lösung einblenden
x 4 -18 x 2 +81 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -18u +81 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +18 ± ( -18 ) 2 -4 · 1 · 81 21

u1,2 = +18 ± 324 -324 2

u1,2 = +18 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 18 2 = 9

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

u2: x 2 = 9

x 2 = 9 | 2
x3 = - 9 = -3
x4 = 9 = 3

L={ -3 ; 3 }

-3 ist 2-fache Lösung! 3 ist 2-fache Lösung!

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 3x - e 2x -6 e x = 0

Lösung einblenden
e 3x - e 2x -6 e x = 0
( e 2x - e x -6 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x - e x -6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 - u -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -6 ) 21

u1,2 = +1 ± 1 +24 2

u1,2 = +1 ± 25 2

u1 = 1 + 25 2 = 1 +5 2 = 6 2 = 3

u2 = 1 - 25 2 = 1 -5 2 = -4 2 = -2

Rücksubstitution:

u1: e x = 3

e x = 3 |ln(⋅)
x1 = ln( 3 ) ≈ 1.0986

u2: e x = -2

e x = -2

Diese Gleichung hat keine Lösung!


2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

L={ ln( 3 ) }

trigonometrische Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 + 3 2 u + 1 2 ) = 0

2 u 2 +3u +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -3 ± 3 2 -4 · 2 · 1 22

u1,2 = -3 ± 9 -8 4

u1,2 = -3 ± 1 4

u1 = -3 + 1 4 = -3 +1 4 = -2 4 = -0,5

u2 = -3 - 1 4 = -3 -1 4 = -4 4 = -1

Rücksubstitution:

u1: cos( x ) = -0,5

canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x1 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x2 = 4 3 π

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = π

L={ 2 3 π ; π ; 4 3 π }