Aufgabenbeispiele von mit Substitution

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -2 x 2 -8 = 0

Lösung einblenden
x 4 -2 x 2 -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

u1,2 = +2 ± 4 +32 2

u1,2 = +2 ± 36 2

u1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

u2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = -2

x 2 = -2 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -2 ; 2 }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x +2 e x -35 = 0

Lösung einblenden
e 2x +2 e x -35 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -35 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -2 ± 2 2 -4 · 1 · ( -35 ) 21

u1,2 = -2 ± 4 +140 2

u1,2 = -2 ± 144 2

u1 = -2 + 144 2 = -2 +12 2 = 10 2 = 5

u2 = -2 - 144 2 = -2 -12 2 = -14 2 = -7

Rücksubstitution:

u1: e x = 5

e x = 5 |ln(⋅)
x1 = ln( 5 ) ≈ 1.6094

u2: e x = -7

e x = -7

Diese Gleichung hat keine Lösung!

L={ ln( 5 ) }

trigonometrische Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + sin( x ) -2 = 0

Lösung einblenden
( sin( x ) ) 2 + sin( x ) -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + u -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

u1,2 = -1 ± 1 +8 2

u1,2 = -1 ± 9 2

u1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

u2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = -2

sin( x ) = -2

Diese Gleichung hat keine Lösung!

L={ 1 2 π }