Aufgabenbeispiele von durch Faktorisieren

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
3 2 sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
3 2 sin( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 cos( x ) +3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) +3 = 0 | -3
2 cos( x ) = -3 |:2
cos( x ) = -1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

L={0; π }

Nullprodukt (mit 2 Linearfaktoren)

Beispiel:

Löse die folgende Gleichung:

-8 ( x -3 ) · ( x -5 ) = 0

Lösung einblenden
-8 ( x -3 ) ( x -5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -3 = 0 | +3
x1 = 3

2. Fall:

x -5 = 0 | +5
x2 = 5

L={ 3 ; 5 }