Aufgabenbeispiele von durch Faktorisieren

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
1 2 sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
1 2 sin( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 cos( x ) +1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) +1 = 0 | -1
2 cos( x ) = -1 |:2
canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x1 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x2 = 4 3 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 2 3 π ; π ; 4 3 π }

Nullprodukt

Beispiel:

Löse die folgende Gleichung:

3 x 2 +1,8x = 0

Lösung einblenden
3 x 2 +1,8x = 0
x ( 3x +1,8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

3x +1,8 = 0 | -1,8
3x = -1,8 |:3
x2 = -0,6

L={ -0,6 ; 0}