Aufgabenbeispiele von durch Faktorisieren

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- sin( x ) + sin( x ) · cos( x ) = 0
( cos( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; π }

0 ist 2-fache Lösung!

Nullprodukt (einfach)

Beispiel:

Löse die folgende Gleichung:

( x +6,1 ) · ( -3x ) = 0

Lösung einblenden
( x +6,1 ) · ( -3x ) = 0
-3 ( x +6,1 ) x = 0
-3 x ( x +6,1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +6,1 = 0 | -6,1
x2 = -6,1

L={ -6,1 ; 0}