Aufgabenbeispiele von COSH

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Doppelbruchterm vereinfachen

Beispiel:

Vereinfache den folgenden Term: 13 a -3 8 a 4

Lösung einblenden

13 a -3 8 a 4

Zuerst schreiben wir die Potenzen mit negativen Hochzahlen in Bruchschreibweise um:

= 13 a 3 8 a 4

Jetzt lösen wir den Doppelbruch auf, indem wir den Zähler mit dem Kehrbruch des Nenners multiplizieren:

= 13 a 3 · a 4 8

= 13 8 a

65 Graph-Term-Zuordnung 2 + Trans.

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= x 3 +1

g(x)=tan(x)+1

h(x)=tan(x)

i(x)= 1 x +1

j(x)= x 3

k(x)= 1 x

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Beim Graph von tan(x) = sin( x ) cos( x ) sieht man viele Asymptoten. Für x=0 ist tan(0)= sin(0) cos(0) = 0, da sin(0)=0. Für größer werdende x wird der Bruch sin(x) cos(x) , also der Tangens sehr schnell größer, da sin(x) immer größer und cos(x) immer kleiner wird. Geht x gegen π 2 , so geht der cos(x) gegen 0 und tan(x) = sin(x) cos(x) strebt somit gegen ∞. Daher kommen die Asymptoten. Für x> π 2 wird der Kosinus und damit der Funktionswert negativ, bleibt aber vom Betrag her sehr groß und wird bei x = π wieder 0, da sin(0) = 0. Da sowohl sin(x) als auch cos(x) 2π-periodisch sind, ist auch der tan(x) 2π-periodisch. (aufgrund der Punkt- bzw. Achsen-Symmetrie von sin(x) und cos(x) bezüglich der Mitte einer Periode ist tan(x) sogar π-periodisch).

Der Graph Nr. 1 gehört also zur Funktion h(x) = tan(x).

Zu Graph Nr. 2:

Den Graph von x 3 erkennt man an seinem Sattelpunkt und der immer größer werdenden Steigung, je weiter sich der Graph vom Ursprung entfernt. Er besitzt die Punkte (-2|-8), (-1|1), (0|0), (1|1), (2|8), usw.

Der Graph Nr. 2 gehört also zur Funktion j(x) = x 3 .

Zu Graph Nr. 3:

Den Graph von 1 x erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso betragsmäßig größer wird der Funktionswert (weil ja x im Nenner steht). Je weiter x sich von 0 entfernt, umso betragsmäßig kleiner wird der Funktionswert, weil ja der Nenner immer größer wird. Der Graph verläuft durch die Punkte (1|1) und (-1|-1), weil f(1) = 1 1 = 1 und f(-1) = 1 -1 = -1. Im Gegensatz zu 1 x 2 hat er für negative x-Werte negative Funktionswerte und für positive x-Werte positive Funktionswerte.

Der Graph Nr. 3 gehört also zur Funktion k(x) = 1 x .

Zu Graph Nr. 4:

Den Graph von 1 x erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso betragsmäßig größer wird der Funktionswert (weil ja x im Nenner steht). Je weiter x sich von 0 entfernt, umso betragsmäßig kleiner wird der Funktionswert, weil ja der Nenner immer größer wird. Der Graph verläuft durch die Punkte (1|1) und (-1|-1), weil f(1) = 1 1 = 1 und f(-1) = 1 -1 = -1. Im Gegensatz zu 1 x 2 hat er für negative x-Werte negative Funktionswerte und für positive x-Werte positive Funktionswerte.

Am Graph Nr. 4 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch zusätzlich um 1 in y-Richtung verschoben wurden.

Der Graph Nr. 4 gehört also zur Funktion i(x) = 1 x +1 .

65 Graph-Term-Zuordnung

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= x 3

g(x)= cos( x )

h(x)= ln( x )

i(x)= 1 x

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Den Graph von 1 x erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso betragsmäßig größer wird der Funktionswert (weil ja x im Nenner steht). Je weiter x sich von 0 entfernt, umso betragsmäßig kleiner wird der Funktionswert, weil ja der Nenner immer größer wird. Der Graph verläuft durch die Punkte (1|1) und (-1|-1), weil f(1) = 1 1 = 1 und f(-1) = 1 -1 = -1. Im Gegensatz zu 1 x 2 hat er für negative x-Werte negative Funktionswerte und für positive x-Werte positive Funktionswerte.

Der Graph Nr. 1 gehört also zur Funktion i(x) = 1 x .

Zu Graph Nr. 2:

Den Graph von x 3 erkennt man an seinem Sattelpunkt und der immer größer werdenden Steigung, je weiter sich der Graph vom Ursprung entfernt. Er besitzt die Punkte (-2|-8), (-1|1), (0|0), (1|1), (2|8), usw.

Der Graph Nr. 2 gehört also zur Funktion f(x) = x 3 .

Zu Graph Nr. 3:

Der Graph von ln( x ) besitzt für negative x-Werte keine Funktionswerte, weil man den Logarithmus nur aus positiven Zahlen ziehen kann. Für x → 0 streben die y-Werte gegen -∞. Der Graph nähert sich somit der negativen y-Achse asymptotisch an. Für positive x-Werte steigt er sehr langsam an. Er schneidet die x-Achse im Punkt (1|0), da e 0 = 1 und somit ln( 1 ) = 0 ist.

Der Graph Nr. 3 gehört also zur Funktion h(x) = ln( x ) .

Zu Graph Nr. 4:

Der Graph von cos( x ) schwingt zwischen 1 und -1. Im Gegensatz zum Sinus startet der Kosinus für x=0 bei 1 (cos(0)=1). Im Einheitskreis rechts wird dies deutlich:

Der Graph Nr. 4 gehört also zur Funktion g(x) = cos( x ) .

65 Graph-Term-Zuordnung 2

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= e x

g(x)= sin( x )

h(x)= ln( x )

i(x)= 1 x

j(x)= x 2

k(x)= 1 x 2

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von ln( x ) besitzt für negative x-Werte keine Funktionswerte, weil man den Logarithmus nur aus positiven Zahlen ziehen kann. Für x → 0 streben die y-Werte gegen -∞. Der Graph nähert sich somit der negativen y-Achse asymptotisch an. Für positive x-Werte steigt er sehr langsam an. Er schneidet die x-Achse im Punkt (1|0), da e 0 = 1 und somit ln( 1 ) = 0 ist.

Der Graph Nr. 1 gehört also zur Funktion h(x) = ln( x ) .

Zu Graph Nr. 2:

Der Graph von e x nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da e 0 = 1.

Der Graph Nr. 2 gehört also zur Funktion f(x) = e x .

Zu Graph Nr. 3:

Den Graph von 1 x erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso betragsmäßig größer wird der Funktionswert (weil ja x im Nenner steht). Je weiter x sich von 0 entfernt, umso betragsmäßig kleiner wird der Funktionswert, weil ja der Nenner immer größer wird. Der Graph verläuft durch die Punkte (1|1) und (-1|-1), weil f(1) = 1 1 = 1 und f(-1) = 1 -1 = -1. Im Gegensatz zu 1 x 2 hat er für negative x-Werte negative Funktionswerte und für positive x-Werte positive Funktionswerte.

Der Graph Nr. 3 gehört also zur Funktion i(x) = 1 x .

Zu Graph Nr. 4:

Den Graph von 1 x 2 erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso größer wird der Funktionswert. Je weiter x sich von 0 entfernt, umso kleiner wird der Funktionswert (weil ja x im Nenner steht). Im Gegensatz zu 1 x hat er sowohl für negative, als auch für positive x positive Funktionswerte. Er ist also achsensymmetrisch bzgl. der y-Achse und enthält z.B. die Punkte (1|1) und (-1|1).

Der Graph Nr. 4 gehört also zur Funktion k(x) = 1 x 2 .