Aufgabenbeispiele von COSH
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Doppelbruchterm vereinfachen
Beispiel:
Vereinfache den folgenden Term:
Zuerst schreiben wir die Potenzen mit negativen Hochzahlen in Bruchschreibweise um:
=
Jetzt lösen wir den Doppelbruch auf, indem wir den Zähler mit dem Kehrbruch des Nenners multiplizieren:
=
=
65 Graph-Term-Zuordnung 2 + Trans.
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
j(x)=
k(x)=
Zu Graph Nr. 1:
Der Graph von hat im Bereich für negative x keine Funktionswerte. Er steigt zunächst sehr schnell, dann nimmt die Steigung aber ab. Er sieht aus wie eine halbe Parabel, die um 90° gedreht wurde. Er besitzt die Punkte (0|0), (1|1), (4|2), usw.Am Graph Nr. 1 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.
Der Graph Nr. 1 gehört also zur Funktion g(x) = .
Zu Graph Nr. 2:
Den Graph von erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso betragsmäßig größer wird der Funktionswert (weil ja x im Nenner steht). Je weiter x sich von 0 entfernt, umso betragsmäßig kleiner wird der Funktionswert, weil ja der Nenner immer größer wird. Der Graph verläuft durch die Punkte (1|1) und (-1|-1), weil f(1) = = 1 und f(-1) = = -1. Im Gegensatz zu hat er für negative x-Werte negative Funktionswerte und für positive x-Werte positive Funktionswerte.Der Graph Nr. 2 gehört also zur Funktion f(x) = .
Zu Graph Nr. 3:
Der Graph von hat im Bereich für negative x keine Funktionswerte. Er steigt zunächst sehr schnell, dann nimmt die Steigung aber ab. Er sieht aus wie eine halbe Parabel, die um 90° gedreht wurde. Er besitzt die Punkte (0|0), (1|1), (4|2), usw.Der Graph Nr. 3 gehört also zur Funktion j(x) = .
Zu Graph Nr. 4:
Den Graph von erkennt man an seinem Sattelpunkt und der immer größer werdenden Steigung, je weiter sich der Graph vom Ursprung entfernt. Er besitzt die Punkte (-2|-8), (-1|1), (0|0), (1|1), (2|8), usw.Am Graph Nr. 4 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.
Der Graph Nr. 4 gehört also zur Funktion h(x) = .
65 Graph-Term-Zuordnung
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
Zu Graph Nr. 1:
Den Graph von erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso betragsmäßig größer wird der Funktionswert (weil ja x im Nenner steht). Je weiter x sich von 0 entfernt, umso betragsmäßig kleiner wird der Funktionswert, weil ja der Nenner immer größer wird. Der Graph verläuft durch die Punkte (1|1) und (-1|-1), weil f(1) = = 1 und f(-1) = = -1. Im Gegensatz zu hat er für negative x-Werte negative Funktionswerte und für positive x-Werte positive Funktionswerte.Der Graph Nr. 1 gehört also zur Funktion f(x) = .
Zu Graph Nr. 2:
Den Graph von erkennt man an seinem Sattelpunkt und der immer größer werdenden Steigung, je weiter sich der Graph vom Ursprung entfernt. Er besitzt die Punkte (-2|-8), (-1|1), (0|0), (1|1), (2|8), usw.Der Graph Nr. 2 gehört also zur Funktion i(x) = .
Zu Graph Nr. 3:

Der Graph Nr. 3 gehört also zur Funktion g(x) = .
Zu Graph Nr. 4:

Der Graph Nr. 4 gehört also zur Funktion h(x) = .
65 Graph-Term-Zuordnung 2
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
j(x)=
k(x)=
Zu Graph Nr. 1:
Der Graph von nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da = 1.Der Graph Nr. 1 gehört also zur Funktion f(x) = .
Zu Graph Nr. 2:
Der Graph von besitzt für negative x-Werte keine Funktionswerte, weil man den Logarithmus nur aus positiven Zahlen ziehen kann. Für x → 0 streben die y-Werte gegen -∞. Der Graph nähert sich somit der negativen y-Achse asymptotisch an. Für positive x-Werte steigt er sehr langsam an. Er schneidet die x-Achse im Punkt (1|0), da = 1 und somit = 0 ist.Der Graph Nr. 2 gehört also zur Funktion j(x) = .
Zu Graph Nr. 3:
Den Graph von erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso betragsmäßig größer wird der Funktionswert (weil ja x im Nenner steht). Je weiter x sich von 0 entfernt, umso betragsmäßig kleiner wird der Funktionswert, weil ja der Nenner immer größer wird. Der Graph verläuft durch die Punkte (1|1) und (-1|-1), weil f(1) = = 1 und f(-1) = = -1. Im Gegensatz zu hat er für negative x-Werte negative Funktionswerte und für positive x-Werte positive Funktionswerte.Der Graph Nr. 3 gehört also zur Funktion k(x) = .
Zu Graph Nr. 4:
Der Graph von hat im Bereich für negative x keine Funktionswerte. Er steigt zunächst sehr schnell, dann nimmt die Steigung aber ab. Er sieht aus wie eine halbe Parabel, die um 90° gedreht wurde. Er besitzt die Punkte (0|0), (1|1), (4|2), usw.Der Graph Nr. 4 gehört also zur Funktion g(x) = .