Aufgabenbeispiele von Rotationskörper

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Rotationskörper

Beispiel:

Die Fläche unter dem Graph von f mit f(x)= 3 2x +2 soll im Intervall [0,1] um die x-Achse rotieren.
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
V = π 0 1 ( 3 2x +2 ) 2 x
= π 0 1 9 ( 2x +2 ) 2 x
= π 0 1 9 ( 2x +2 ) -2 x

= π [ - 9 2 ( 2x +2 ) -1 ] 0 1

= π [ - 9 2( 2x +2 ) ] 0 1

= π · ( - 9 2( 21 +2 ) + 9 2( 20 +2 ) )

= π · ( - 9 2( 2 +2 ) + 9 2( 0 +2 ) )

= π · ( - 9 2 4 + 9 2 2 )

= π · ( - 9 2 ( 1 4 ) + 9 2 ( 1 2 ) )

= π · ( - 9 8 + 9 4 )

= π · ( - 9 8 + 18 8 )

= π · 9 8

= 9 8 π


≈ 3,534

Rotationskörper zwischen zwei Kurven

Beispiel:

Die Graphen der Funktionen f und g mit f(x)= 2 x und g(x)= 2 3x +1 schließen eine Fläche ein. Diese Fläche rotiert im Intervall [1,3] um die x-Achse und erzeugt somit einen Drehkörper.
Berechne das Volumen dieses Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den so entstandenen Rotationskörper kann man sich vorstellen als Rotationskörper, der durch Rotation der Fläche unter dem Graph von f entsteht, und aus dem der Rotationskörper, der durch Rotation der Fläche unter dem Graph von g entsteht, herausgefräst wird. Dadurch ergibt sich für solch einen Rotationskörper die Formel:

V = π 1 3 ( 2 x ) 2 x - π 1 3 ( 2 3x +1 ) 2 x

Da die beiden Integrale die gleichen Grenzen haben, kann man auch die beiden Summanden in ein Integral schreiben:

= π 1 3 ( ( 2 x ) 2 - ( 2 3x +1 ) 2 ) x

= π 1 3 ( 4 x 2 - 4 ( 3x +1 ) 2 ) x

= π 1 3 ( - 4 ( 3x +1 ) 2 + 4 x 2 ) x
= π 1 3 ( -4 ( 3x +1 ) -2 +4 x -2 ) x

= π [ 4 3 ( 3x +1 ) -1 -4 x -1 ] 1 3

= π [ 4 3( 3x +1 ) - 4 x ] 1 3

= π · ( 4 3( 33 +1 ) - 4 3 - ( 4 3( 31 +1 ) - 4 1 ) )

= π · ( 4 3( 9 +1 ) -4( 1 3 ) - ( 4 3( 3 +1 ) -41 ) )

= π · ( 4 3 10 - 4 3 - ( 4 3 4 -4 ) )

= π · ( 4 3 ( 1 10 ) - 4 3 - ( 4 3 ( 1 4 ) -4 ) )

= π · ( 2 15 - 4 3 - ( 1 3 -4 ) )

= π · ( 2 15 - 20 15 - ( 1 3 - 12 3 ) )

= π · ( - 6 5 -1 · ( - 11 3 ) )

= π · ( - 6 5 + 11 3 )

= π · 37 15

= 37 15 π


≈ 7,749

Rotationskörper um andere Achse

Beispiel:

Die Fläche zwischen dem Graph von f mit f(x)= 2 e 0,3x und der Geraden y = 2 rotiert im Intervall [0,3] um diese Gerade y = 2 (nicht um die x-Achse).
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Fläche zwischen dem Graph von f und der Geraden y = 2 (linkes Schaubild) ist die gleiche Fläche wie die zwischen der Differenzfunktion f(x)-2 = 2 e 0,3x -2
und der x-Achse (rechtes Schaubild).

Dementsprechend ist auch der gesuchte Rotationskörper der gleiche, wie wenn man die Fläche unter der Differenzfunktion (rechtes Schaubild) um die x-Achse rotieren lassen würde. Dadurch ergibt sich für das Volumen:

V = π 0 3 ( 2 e 0,3x -2 ) 2 x

= π 0 3 ( 4 e 0,6x -8 e 0,3x +4 ) x

= π [ 20 3 e 0,6x - 80 3 e 0,3x +4x ] 0 3

= π · ( 20 3 e 0,63 - 80 3 e 0,33 +43 - ( 20 3 e 0,60 - 80 3 e 0,30 +40 ) )

= π · ( 20 3 e 1,8 - 80 3 e 0,9 +12 - ( 20 3 e 0 - 80 3 e 0 +0) )

= π · ( 20 3 e 1,8 - 80 3 e 0,9 +12 - ( 20 3 - 80 3 +0) )

= π · ( 20 3 e 1,8 - 80 3 e 0,9 +12 - ( 20 3 - 80 3 +0) )

= π · ( 20 3 e 1,8 - 80 3 e 0,9 +12 -1 · ( -20 ) )

= π · ( 20 3 e 1,8 - 80 3 e 0,9 +12 +20 )

= π · ( 20 3 e 1,8 - 80 3 e 0,9 +32 )


≈ 21,179