Aufgabenbeispiele von mit Parameter

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ableiten mit Parameter (BF)

Beispiel:

Berechne die Ableitung von f mit ft(x)= t e 2x und vereinfache:

Lösung einblenden

f(x)= t e 2x

f'(x)= t e 2x · 2

= 2 t e 2x

Ableiten mit Parameter

Beispiel:

Berechne die Ableitung von f mit ft(x)= - t 2 x 4 und vereinfache:

Lösung einblenden

f(x)= - t 2 x 4

f'(x)= -4 t 2 x 3

gegeb. Tangentensteigung (BF)

Beispiel:

Für welche t ist die Tangente von f mit ft(x)= 2 x 2 +2 t x im Punkt B(-1|f(-1)) parallel zur Gerade y= -2x -8 ?

Lösung einblenden

Um die Tangentensteigung zu bestimmen, leiten wir die Funktion erst einmal ab:

f(x)= 2 x 2 +2 t x

f'(x)= 4x +2 t

In diese Ableitung setzen wir x=-1 ein:

f'(-1)= 4( -1 ) +2 t = 2t -4

Damit die Tangente parallel zur Geraden y= -2 x-8 wird, müssen die Steigungen gleich sein,
also f'(-1)= 2t -4 soll gleich -2 sein.

Dazu lösen wir die Gleichung 2t -4 = -2 nach t auf.

2t -4 = -2 | +4
2t = 2 |:2
t = 1

Für t= 1 ist also die Tangente parallel zu der gegebenen Gerade.

t-Wert bestimmen, dass f'(x0)=y0

Beispiel:

Für welche t ist die Tangente von f mit ft(x)= ( -x +5 ) · e - t x im Punkt B(0|f(0)) parallel zur Gerade y= - 38 3 x -7 ?
Gib alle Möglichkeiten für t an.

Lösung einblenden

Um die Tangentensteigung zu bestimmen, leiten wir die Funktion erst einmal ab:

f(x)= ( -x +5 ) · e - t x

f'(x)= ( -1 +0 ) · e - t x + ( -x +5 ) · e - t x · ( - t )

= - e - t x + ( -x +5 ) · ( - t e - t x )

= - e - t x - t ( -x +5 ) · e - t x

= e - t x · ( t x -5 t -1 )

= e - t x · ( t x + ( -5t -1 ) )

= ( t x + ( -5t -1 ) ) · e - t x

In diese Ableitung setzen wir x=0 ein:

f'(0) = - e - t 0 - t · ( -0 +5 ) · e - t 0 = -1 -5 t = -5t -1

Damit die Tangente parallel zur Geraden y= - 38 3 x-7 wird, müssen die Steigungen gleich sein,
also f'(0)= -5t -1 soll gleich - 38 3 sein.
Dazu lösen wir die Gleichung -5t -1 = - 38 3 nach t auf.

-5t -1 = - 38 3 | +1
-5t = - 35 3 |:(-5 )
t = 7 3

Für t= 7 3 ist also die Tangente parallel zu der gegebenen Gerade.