Aufgabenbeispiele von MGK Klasse 8
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binär aus Dezimal
Beispiel:
Gib die Zahl 109 im Binärsystem an.
Zuerst versuchen wir Schritt für Schritt die Zahl 109 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:
109 = 64 + 45 = 64 + 32 + 13 = 64 + 32 + 8 + 5 = 64 + 32 + 8 + 4 + 1
= 1⋅64 + 1⋅32 + 0⋅16 + 1⋅8 + 1⋅4 + 0⋅2 + 1⋅1
Somit ergibt sich die Binärdarstellung von 109 = (110.1101)2
Dezimal aus Binär
Beispiel:
Gib die Zahl (110)2 im Dezimalsystem an.
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(110)2 = 0⋅1 + 1⋅2 + 1⋅4= 6
Somit ergibt sich die Dezimaldarstellung von (110)2 = 6
ggT mit Primfaktoren
Beispiel:
Bestimme den größten gemeinsamen Teiler von 40 und 108.
Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:
40
= 2 ⋅ 20
= 2 ⋅ 2 ⋅ 10
= 2 ⋅ 2 ⋅ 2 ⋅ 5
108
= 2 ⋅ 54
= 2 ⋅ 2 ⋅ 27
= 2 ⋅ 2 ⋅ 3 ⋅ 9
= 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 3
Jetzt gehen wir alle Primteiler, die in beiden Zerlegungen vorkommen, durch und stecken diese in ihrer gemeinsamen Potenz (also so oft, wie sie höchstens in beiden Zahlen vorkommen) in unsere neue Zahl:
2 ⋅ 2(die 2 kommt sowohl in 40 als auch 108 insgesamt 2 mal vor)
Da 2 ⋅ 2 = 4 in beiden Primfaktorzerlegungen vorkommt, muss 4 auf jeden Fall ein Teiler von beiden Zahlen sein. Andererseits kann es keinen größeren gemeinsamen Teiler geben, denn sonst müsste ja in diesem größeren gemeinsamen Teiler noch ein weiterer gemeinsamer Primfaktor sein.
Unser größter gemeinsamer Teiler von 40 und 108 ist somit :
ggT(40,108) = 4
kgV mit Primfaktoren
Beispiel:
Bestimme das kleinste gemeinsame Vielfache von 18 und 77.
Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:
18
= 2 ⋅ 9
= 2 ⋅ 3 ⋅ 3
77
= 7 ⋅ 11
Jetzt gehen wir jeden Primteiler, der in einer den beiden Zerlegungen vorkommt, durch und stecken diesen in seiner maximalen Potenz (also so oft, wie er höchstens in einer Zahl vorkommt) in unsere neue Zahl:
2(die 2 kommt in 18 insgesamt 1 mal vor)
2 ⋅ 3 ⋅ 3(die 3 kommt in 18 insgesamt 2 mal vor)
2 ⋅ 3 ⋅ 3 ⋅ 7(die 7 kommt in 77 insgesamt 1 mal vor)
2 ⋅ 3 ⋅ 3 ⋅ 7 ⋅ 11(die 11 kommt in 77 insgesamt 1 mal vor)
In 2 ⋅ 3 ⋅ 3 ⋅ 7 ⋅ 11 = 1386 sind nun alle Primteiler von 18 und alle Primteiler von 77 enthalten. Also ist 1386 ein Vielfaches von 18 und 77. Es muss auch das kleinste sein, denn bei einer noch kleineren Zahl würde mindestens ein Primfaktor von 18 oder 77 fehlen.
Das kleinste gemeinsame Vielfache von 18 und 77 ist somit :
kgV(18,77) = 1386
ggT mit Euklid' schem Algor.
Beispiel:
Berechne mit Hilfe des Euklid'schen Algorithmus den größten gemeinsamen Teiler von 159 und 129.
Berechnung des größten gemeinsamen Teilers von 159 und 129
| =>159 | = 1⋅129 + 30 |
| =>129 | = 4⋅30 + 9 |
| =>30 | = 3⋅9 + 3 |
| =>9 | = 3⋅3 + 0 |
also gilt: ggt(159,129)=3
Binär und Dezimal aus Hexdezimal
Beispiel:
Gib die Zahl (B1)16 sowohl im Dezimal- als auch im Binärsystem an.
Als Binärzahl
Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:
(B)16 = 11 = 8 + 2 + 1 = 1⋅8 + 0⋅4 + 1⋅2 + 1⋅1 = (1011)2
(1)16 = 1 = 1 = 0⋅8 + 0⋅4 + 0⋅2 + 1⋅1 = (0001)2
Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.
Somit ergibt sich die Binärdarstellung von (B1)16 = (1011.0001)2
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(1011.0001)2 = 1⋅1 + 0⋅2 + 0⋅4 + 0⋅8 + 1⋅16 + 1⋅32 + 0⋅64 + 1⋅128= 177
Somit ergibt sich die Dezimaldarstellung von (1011.0001)2 = 177
alle Teiler einer Zahl
Beispiel:
Bestimme alle Teiler von 30 an:
Wir suchen alle Teiler von 30. Dabei beginnen wir mit der 1 und testen die weiteren Zahlen.
Wenn eine Zahl ein Teiler von 30 ist, teilen wir 30 durch diese Zahl und erhalten so automatisch einen weiteren Teiler. Wir erhalten so also immer Teiler-Paare mit einem größerem und einem kleineren Teiler (die multipliziert wieder 30 ergeben).
Somit genügt es, nur die kleineren Teiler zu finden, weil wir ja so die Größeren automatisch mit erhalten.
1 ist Teiler von 30, denn 30 = 1 ⋅ 30, also ist auch 30 ein Teiler.
2 ist Teiler von 30, denn 30 = 2 ⋅ 15, also ist auch 15 ein Teiler.
3 ist Teiler von 30, denn 30 = 3 ⋅ 10, also ist auch 10 ein Teiler.
4 ist kein Teiler von 30, denn 30 = 4 ⋅ 7 + 2.
5 ist Teiler von 30, denn 30 = 5 ⋅ 6, also ist auch 6 ein Teiler.
Jetzt können wir das Ausprobieren beenden, weil wir ja bereits 6 bei den größeren Teiler drin haben, also kann es jetzt keine weiteren (kleine) Teiler mehr geben.
Richtig sortiert ergibt sich also für die Teilermenge von 30:
1, 2, 3, 5, 6, 10, 15, 30
Teilbarkeitsregeln rückwärts
Beispiel:
Bestimme eine Ziffer, die man für das Kästchen ⬜ einsetzen kann, damit 5⬜8 sowohl durch 3 als auch durch 4 teilbar ist.
Wir schauen zuerst, welche Ziffern möglich sind, dass die Zahl durch 4 teilbar ist.
Dazu müssen wir ja nur die letzten beiden Stellen betrachten, also ⬜8.
Da an der letzten Stelle eine 8 steht, muss an der vorletzten Stelle eine gerade Zahl (also 0, 2, 4, 6 oder 8) stehen, damit sie durch 4 teilbar ist (weil eben nur 08, 28, 48, 68, 88 durch 4 teilbar sind).
Diese verbleibenden Möglichkeiten überprüfen wir nun noch auf Teilbarkeit durch 3.
0: Dann wäre die Zahl 508, für die Quersumme gilt dann: 5 + 0 + 8 = 13, also nicht durch 3 teilbar.
2: Dann wäre die Zahl 528, für die Quersumme gilt dann: 5 + 2 + 8 = 15, also durch 3 teilbar.
4: Dann wäre die Zahl 548, für die Quersumme gilt dann: 5 + 4 + 8 = 17, also nicht durch 3 teilbar.
6: Dann wäre die Zahl 568, für die Quersumme gilt dann: 5 + 6 + 8 = 19, also nicht durch 3 teilbar.
8: Dann wäre die Zahl 588, für die Quersumme gilt dann: 5 + 8 + 8 = 21, also durch 3 teilbar.
Die möglichen Ziffern sind also 2 und 8.
Summe von Primzahlen
Beispiel:
Schreibe 60 als Summe von zwei Primzahlen:
Wir testen der Reihe nach alle Primzahlen, ob sie mit einer weiteren Primzahl die Summe von 60 bilden:
2 + 58 = 60, dabei ist 58 aber keine Primzahl
3 + 57 = 60, dabei ist 57 aber keine Primzahl
5 + 55 = 60, dabei ist 55 aber keine Primzahl
7 + 53 = 60, dabei ist 53 auch eine Primzahl
7 und 53 wären also zwei Primzahlen mit 7 + 53 = 60
Primfaktorzerlegung
Beispiel:
Bestimme die Primfaktorzerlegung von 35 :
Wir testen der Reihe nach alle Primzahlen, ob sie Teiler von 35 sind und zerlegen dann immer die Zahl in die Primzahl und den anderen Faktor:
35
= 5 ⋅ 7
