Aufgabenbeispiele von MGK Klasse 8

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binär aus Dezimal

Beispiel:

Gib die Zahl 261 im Binärsystem an.

Lösung einblenden
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Zuerst versuchen wir Schritt für Schritt die Zahl 261 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:

261 = 256 + 5
= 256 + 4 + 1

= 1⋅256 + 0⋅128 + 0⋅64 + 0⋅32 + 0⋅16 + 0⋅8 + 1⋅4 + 0⋅2 + 1⋅1

Somit ergibt sich die Binärdarstellung von 261 = (1.0000.0101)2

Dezimal aus Binär

Beispiel:

Gib die Zahl (1001.0010)2 im Dezimalsystem an.

Lösung einblenden

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(1001.0010)2 = 0⋅1 + 1⋅2 + 0⋅4 + 0⋅8 + 1⋅16 + 0⋅32 + 0⋅64 + 1⋅128= 146

Somit ergibt sich die Dezimaldarstellung von (1001.0010)2 = 146

ggT mit Primfaktoren

Beispiel:

Bestimme den größten gemeinsamen Teiler von 140 und 150.

Lösung einblenden

Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:

140
= 2 ⋅ 70
= 2 ⋅ 2 ⋅ 35
= 2 ⋅ 2 ⋅ 5 ⋅ 7

150
= 2 ⋅ 75
= 2 ⋅ 3 ⋅ 25
= 2 ⋅ 3 ⋅ 5 ⋅ 5

Jetzt gehen wir alle Primteiler, die in beiden Zerlegungen vorkommen, durch und stecken diese in ihrer gemeinsamen Potenz (also so oft, wie sie höchstens in beiden Zahlen vorkommen) in unsere neue Zahl:

2(die 2 kommt sowohl in 140 als auch 150 insgesamt 1 mal vor)

2 ⋅ 5(die 5 kommt sowohl in 140 als auch 150 insgesamt 1 mal vor)

Da 2 ⋅ 5 = 10 in beiden Primfaktorzerlegungen vorkommt, muss 10 auf jeden Fall ein Teiler von beiden Zahlen sein. Andererseits kann es keinen größeren gemeinsamen Teiler geben, denn sonst müsste ja in diesem größeren gemeinsamen Teiler noch ein weiterer gemeinsamer Primfaktor sein.

Unser größter gemeinsamer Teiler von 140 und 150 ist somit :
ggT(140,150) = 10

kgV mit Primfaktoren

Beispiel:

Bestimme das kleinste gemeinsame Vielfache von 20 und 33.

Lösung einblenden

Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:

20
= 2 ⋅ 10
= 2 ⋅ 2 ⋅ 5

33
= 3 ⋅ 11

Jetzt gehen wir jeden Primteiler, der in einer den beiden Zerlegungen vorkommt, durch und stecken diesen in seiner maximalen Potenz (also so oft, wie er höchstens in einer Zahl vorkommt) in unsere neue Zahl:

2 ⋅ 2(die 2 kommt in 20 insgesamt 2 mal vor)

2 ⋅ 2 ⋅ 3(die 3 kommt in 33 insgesamt 1 mal vor)

2 ⋅ 2 ⋅ 3 ⋅ 5(die 5 kommt in 20 insgesamt 1 mal vor)

2 ⋅ 2 ⋅ 3 ⋅ 5 ⋅ 11(die 11 kommt in 33 insgesamt 1 mal vor)

In 2 ⋅ 2 ⋅ 3 ⋅ 5 ⋅ 11 = 660 sind nun alle Primteiler von 20 und alle Primteiler von 33 enthalten. Also ist 660 ein Vielfaches von 20 und 33. Es muss auch das kleinste sein, denn bei einer noch kleineren Zahl würde mindestens ein Primfaktor von 20 oder 33 fehlen.

Das kleinste gemeinsame Vielfache von 20 und 33 ist somit :
kgV(20,33) = 660

ggT mit Euklid' schem Algor.

Beispiel:

Berechne mit Hilfe des Euklid'schen Algorithmus den größten gemeinsamen Teiler von 51 und 29.

Lösung einblenden

Berechnung des größten gemeinsamen Teilers von 51 und 29

=>51 = 1⋅29 + 22
=>29 = 1⋅22 + 7
=>22 = 3⋅7 + 1
=>7 = 7⋅1 + 0

also gilt: ggt(51,29)=1

Binär und Hexdezimal aus Dezimal

Beispiel:

Gib die Zahl 12 sowohl im Binär- als auch im Hexdezimalsystem an.

Lösung einblenden
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Zuerst versuchen wir Schritt für Schritt die Zahl 12 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:

12 = 8 + 4

= 1⋅8 + 1⋅4 + 0⋅2 + 0⋅1

Somit ergibt sich die Binärdarstellung von 12 = (1100)2

Um die Zahl 12 als Hexadzimalzahl auszugeben, gibt es zwei Möglichkeiten:

Theoretisch könnte man 12 wieder als Summe von 16er-Potenzen zerlegen und so die Koeffizienten vor den 16er-Potenzen als Hexadezimalzahl erhalten.

Wenn man bereits die Binärzahl hat, gibt es aber einen schnelleren Weg;

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(1100)2 = 1⋅8 + 1⋅4 + 0⋅2 + 0⋅1 = 12 = (C)16

Somit ergibt sich die Hexadezimaldarstellung von (1100)2 = (C)16

alle Teiler einer Zahl

Beispiel:

Bestimme alle Teiler von 42 an:

Lösung einblenden

Wir suchen alle Teiler von 42. Dabei beginnen wir mit der 1 und testen die weiteren Zahlen.

Wenn eine Zahl ein Teiler von 42 ist, teilen wir 42 durch diese Zahl und erhalten so automatisch einen weiteren Teiler. Wir erhalten so also immer Teiler-Paare mit einem größerem und einem kleineren Teiler (die multipliziert wieder 42 ergeben).

Somit genügt es, nur die kleineren Teiler zu finden, weil wir ja so die Größeren automatisch mit erhalten.

1 ist Teiler von 42, denn 42 = 1 ⋅ 42, also ist auch 42 ein Teiler.

2 ist Teiler von 42, denn 42 = 2 ⋅ 21, also ist auch 21 ein Teiler.

3 ist Teiler von 42, denn 42 = 3 ⋅ 14, also ist auch 14 ein Teiler.

4 ist kein Teiler von 42, denn 42 = 4 ⋅ 10 + 2.

5 ist kein Teiler von 42, denn 42 = 5 ⋅ 8 + 2.

6 ist Teiler von 42, denn 42 = 6 ⋅ 7, also ist auch 7 ein Teiler.

Jetzt können wir das Ausprobieren beenden, weil wir ja bereits 7 bei den größeren Teiler drin haben, also kann es jetzt keine weiteren (kleine) Teiler mehr geben.

Richtig sortiert ergibt sich also für die Teilermenge von 42:
1, 2, 3, 6, 7, 14, 21, 42

Teilbarkeitsregeln rückwärts

Beispiel:

Bestimme eine Ziffer, die man für das Kästchen ⬜ einsetzen kann, damit 37⬜ sowohl durch 3 als auch durch 4 teilbar ist.

Lösung einblenden

Wir schauen zuerst, welche Ziffern möglich sind, dass die Zahl durch 4 teilbar ist.
Dazu müssen wir ja nur die letzten beiden Stellen betrachten, also 7⬜.

Bei den 70er-Zahlen muss ja 2 oder 6 an der Einerstelle stehen, weil eben nur 72, 76 durch 4 teilbar sind.

Diese verbleibenden Möglichkeiten überprüfen wir nun noch auf Teilbarkeit durch 3.

2: Dann wäre die Zahl 372, für die Quersumme gilt dann: 3 + 7 + 2 = 12, also durch 3 teilbar.

6: Dann wäre die Zahl 376, für die Quersumme gilt dann: 3 + 7 + 6 = 16, also nicht durch 3 teilbar.

Die einzige mögliche Ziffer ist also 2.

Summe von Primzahlen

Beispiel:

Schreibe 28 als Summe von zwei Primzahlen:

Lösung einblenden

Wir testen der Reihe nach alle Primzahlen, ob sie mit einer weiteren Primzahl die Summe von 28 bilden:

2 + 26 = 28, dabei ist 26 aber keine Primzahl

3 + 25 = 28, dabei ist 25 aber keine Primzahl

5 + 23 = 28, dabei ist 23 auch eine Primzahl

5 und 23 wären also zwei Primzahlen mit 5 + 23 = 28

Primfaktorzerlegung

Beispiel:

Bestimme die Primfaktorzerlegung von 35 :

Lösung einblenden

Wir testen der Reihe nach alle Primzahlen, ob sie Teiler von 35 sind und zerlegen dann immer die Zahl in die Primzahl und den anderen Faktor:

35
= 5 ⋅ 7