Aufgabenbeispiele von Teilaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binär und Hexdezimal aus Dezimal
Beispiel:
Gib die Zahl 111 sowohl im Binär- als auch im Hexdezimalsystem an.
Zuerst versuchen wir Schritt für Schritt die Zahl 111 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:
111 = 64 + 47 = 64 + 32 + 15 = 64 + 32 + 8 + 7 = 64 + 32 + 8 + 4 + 3 = 64 + 32 + 8 + 4 + 2 + 1
= 1⋅64 + 1⋅32 + 0⋅16 + 1⋅8 + 1⋅4 + 1⋅2 + 1⋅1
Somit ergibt sich die Binärdarstellung von 111 = (110.1111)2
Um die Zahl 111 als Hexadzimalzahl auszugeben, gibt es zwei Möglichkeiten:
Theoretisch könnte man 111 wieder als Summe von 16er-Potenzen zerlegen und so die Koeffizienten vor den 16er-Potenzen als Hexadezimalzahl erhalten.
Wenn man bereits die Binärzahl hat, gibt es aber einen schnelleren Weg;
Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:
(110)2 = 1⋅4 + 1⋅2 + 0⋅1 = 6 = (6)16
(1111)2 = 1⋅8 + 1⋅4 + 1⋅2 + 1⋅1 = 15 = (F)16
Somit ergibt sich die Hexadezimaldarstellung von (110.1111)2 = (6F)16
Dezimal und Hexdezimal aus Binär
Beispiel:
Gib die Zahl (1001.0100)2 sowohl im Dezimal- als auch im Hexdezimalsystem an.
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(1001.0100)2 = 0⋅1 + 0⋅2 + 1⋅4 + 0⋅8 + 1⋅16 + 0⋅32 + 0⋅64 + 1⋅128= 148
Somit ergibt sich die Dezimaldarstellung von (1001.0100)2 = 148
Als Hexadezimalzahl
Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:
(1001)2 = 1⋅8 + 0⋅4 + 0⋅2 + 1⋅1 = 9 = (9)16
(0100)2 = 0⋅8 + 1⋅4 + 0⋅2 + 0⋅1 = 4 = (4)16
Somit ergibt sich die Hexadezimaldarstellung von (1001.0100)2 = (94)16
Binär und Dezimal aus Hexdezimal
Beispiel:
Gib die Zahl (9F)16 sowohl im Dezimal- als auch im Binärsystem an.
Als Binärzahl
Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:
(9)16 = 9 = 8 + 1 = 1⋅8 + 0⋅4 + 0⋅2 + 1⋅1 = (1001)2
(F)16 = 15 = 8 + 4 + 2 + 1 = 1⋅8 + 1⋅4 + 1⋅2 + 1⋅1 = (1111)2
Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.
Somit ergibt sich die Binärdarstellung von (9F)16 = (1001.1111)2
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(1001.1111)2 = 1⋅1 + 1⋅2 + 1⋅4 + 1⋅8 + 1⋅16 + 0⋅32 + 0⋅64 + 1⋅128= 159
Somit ergibt sich die Dezimaldarstellung von (1001.1111)2 = 159