Aufgabenbeispiele von Teilaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binär und Hexdezimal aus Dezimal

Beispiel:

Gib die Zahl 262 sowohl im Binär- als auch im Hexdezimalsystem an.

Lösung einblenden
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Zuerst versuchen wir Schritt für Schritt die Zahl 262 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:

262 = 256 + 6
= 256 + 4 + 2

= 1⋅256 + 0⋅128 + 0⋅64 + 0⋅32 + 0⋅16 + 0⋅8 + 1⋅4 + 1⋅2 + 0⋅1

Somit ergibt sich die Binärdarstellung von 262 = (1.0000.0110)2

Um die Zahl 262 als Hexadzimalzahl auszugeben, gibt es zwei Möglichkeiten:

Theoretisch könnte man 262 wieder als Summe von 16er-Potenzen zerlegen und so die Koeffizienten vor den 16er-Potenzen als Hexadezimalzahl erhalten.

Wenn man bereits die Binärzahl hat, gibt es aber einen schnelleren Weg;

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(1)2 = 1⋅1 = 1 = (1)16

(0000)2 = 0⋅8 + 0⋅4 + 0⋅2 + 0⋅1 = 0 = (0)16

(0110)2 = 0⋅8 + 1⋅4 + 1⋅2 + 0⋅1 = 6 = (6)16

Somit ergibt sich die Hexadezimaldarstellung von (1.0000.0110)2 = (106)16

Dezimal und Hexdezimal aus Binär

Beispiel:

Gib die Zahl (111)2 sowohl im Dezimal- als auch im Hexdezimalsystem an.

Lösung einblenden

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(111)2 = 1⋅1 + 1⋅2 + 1⋅4= 7

Somit ergibt sich die Dezimaldarstellung von (111)2 = 7

Als Hexadezimalzahl

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(111)2 = 1⋅4 + 1⋅2 + 1⋅1 = 7 = (7)16

Somit ergibt sich die Hexadezimaldarstellung von (111)2 = (7)16

Binär und Dezimal aus Hexdezimal

Beispiel:

Gib die Zahl (30)16 sowohl im Dezimal- als auch im Binärsystem an.

Lösung einblenden

Als Binärzahl

Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:

(3)16 = 3 = 2 + 1 = 1⋅2 + 1⋅1 = (11)2

(0)16 = 0 = 0 = 0⋅8 + 0⋅4 + 0⋅2 + 0⋅1 = (0000)2

Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.

Somit ergibt sich die Binärdarstellung von (30)16 = (11.0000)2

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(11.0000)2 = 0⋅1 + 0⋅2 + 0⋅4 + 0⋅8 + 1⋅16 + 1⋅32= 48

Somit ergibt sich die Dezimaldarstellung von (11.0000)2 = 48