Aufgabenbeispiele von Teilaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binär und Hexdezimal aus Dezimal

Beispiel:

Gib die Zahl 111 sowohl im Binär- als auch im Hexdezimalsystem an.

Lösung einblenden
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Zuerst versuchen wir Schritt für Schritt die Zahl 111 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:

111 = 64 + 47
= 64 + 32 + 15
= 64 + 32 + 8 + 7
= 64 + 32 + 8 + 4 + 3
= 64 + 32 + 8 + 4 + 2 + 1

= 1⋅64 + 1⋅32 + 0⋅16 + 1⋅8 + 1⋅4 + 1⋅2 + 1⋅1

Somit ergibt sich die Binärdarstellung von 111 = (110.1111)2

Um die Zahl 111 als Hexadzimalzahl auszugeben, gibt es zwei Möglichkeiten:

Theoretisch könnte man 111 wieder als Summe von 16er-Potenzen zerlegen und so die Koeffizienten vor den 16er-Potenzen als Hexadezimalzahl erhalten.

Wenn man bereits die Binärzahl hat, gibt es aber einen schnelleren Weg;

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(110)2 = 1⋅4 + 1⋅2 + 0⋅1 = 6 = (6)16

(1111)2 = 1⋅8 + 1⋅4 + 1⋅2 + 1⋅1 = 15 = (F)16

Somit ergibt sich die Hexadezimaldarstellung von (110.1111)2 = (6F)16

Dezimal und Hexdezimal aus Binär

Beispiel:

Gib die Zahl (1001.0100)2 sowohl im Dezimal- als auch im Hexdezimalsystem an.

Lösung einblenden

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(1001.0100)2 = 0⋅1 + 0⋅2 + 1⋅4 + 0⋅8 + 1⋅16 + 0⋅32 + 0⋅64 + 1⋅128= 148

Somit ergibt sich die Dezimaldarstellung von (1001.0100)2 = 148

Als Hexadezimalzahl

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(1001)2 = 1⋅8 + 0⋅4 + 0⋅2 + 1⋅1 = 9 = (9)16

(0100)2 = 0⋅8 + 1⋅4 + 0⋅2 + 0⋅1 = 4 = (4)16

Somit ergibt sich die Hexadezimaldarstellung von (1001.0100)2 = (94)16

Binär und Dezimal aus Hexdezimal

Beispiel:

Gib die Zahl (9F)16 sowohl im Dezimal- als auch im Binärsystem an.

Lösung einblenden

Als Binärzahl

Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:

(9)16 = 9 = 8 + 1 = 1⋅8 + 0⋅4 + 0⋅2 + 1⋅1 = (1001)2

(F)16 = 15 = 8 + 4 + 2 + 1 = 1⋅8 + 1⋅4 + 1⋅2 + 1⋅1 = (1111)2

Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.

Somit ergibt sich die Binärdarstellung von (9F)16 = (1001.1111)2

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(1001.1111)2 = 1⋅1 + 1⋅2 + 1⋅4 + 1⋅8 + 1⋅16 + 0⋅32 + 0⋅64 + 1⋅128= 159

Somit ergibt sich die Dezimaldarstellung von (1001.1111)2 = 159