Aufgabenbeispiele von Teilaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binär und Hexdezimal aus Dezimal
Beispiel:
Gib die Zahl 250 sowohl im Binär- als auch im Hexdezimalsystem an.
Zuerst versuchen wir Schritt für Schritt die Zahl 250 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:
250 = 128 + 122 = 128 + 64 + 58 = 128 + 64 + 32 + 26 = 128 + 64 + 32 + 16 + 10 = 128 + 64 + 32 + 16 + 8 + 2
= 1⋅128 + 1⋅64 + 1⋅32 + 1⋅16 + 1⋅8 + 0⋅4 + 1⋅2 + 0⋅1
Somit ergibt sich die Binärdarstellung von 250 = (1111.1010)2
Um die Zahl 250 als Hexadzimalzahl auszugeben, gibt es zwei Möglichkeiten:
Theoretisch könnte man 250 wieder als Summe von 16er-Potenzen zerlegen und so die Koeffizienten vor den 16er-Potenzen als Hexadezimalzahl erhalten.
Wenn man bereits die Binärzahl hat, gibt es aber einen schnelleren Weg;
Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:
(1111)2 = 1⋅8 + 1⋅4 + 1⋅2 + 1⋅1 = 15 = (F)16
(1010)2 = 1⋅8 + 0⋅4 + 1⋅2 + 0⋅1 = 10 = (A)16
Somit ergibt sich die Hexadezimaldarstellung von (1111.1010)2 = (FA)16
Dezimal und Hexdezimal aus Binär
Beispiel:
Gib die Zahl (1.0010.0010)2 sowohl im Dezimal- als auch im Hexdezimalsystem an.
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(1.0010.0010)2 = 0⋅1 + 1⋅2 + 0⋅4 + 0⋅8 + 0⋅16 + 1⋅32 + 0⋅64 + 0⋅128 + 1⋅256= 290
Somit ergibt sich die Dezimaldarstellung von (1.0010.0010)2 = 290
Als Hexadezimalzahl
Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:
(1)2 = 1⋅1 = 1 = (1)16
(0010)2 = 0⋅8 + 0⋅4 + 1⋅2 + 0⋅1 = 2 = (2)16
(0010)2 = 0⋅8 + 0⋅4 + 1⋅2 + 0⋅1 = 2 = (2)16
Somit ergibt sich die Hexadezimaldarstellung von (1.0010.0010)2 = (122)16
Binär und Dezimal aus Hexdezimal
Beispiel:
Gib die Zahl (D9)16 sowohl im Dezimal- als auch im Binärsystem an.
Als Binärzahl
Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:
(D)16 = 13 = 8 + 4 + 1 = 1⋅8 + 1⋅4 + 0⋅2 + 1⋅1 = (1101)2
(9)16 = 9 = 8 + 1 = 1⋅8 + 0⋅4 + 0⋅2 + 1⋅1 = (1001)2
Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.
Somit ergibt sich die Binärdarstellung von (D9)16 = (1101.1001)2
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(1101.1001)2 = 1⋅1 + 0⋅2 + 0⋅4 + 1⋅8 + 1⋅16 + 0⋅32 + 1⋅64 + 1⋅128= 217
Somit ergibt sich die Dezimaldarstellung von (1101.1001)2 = 217
