Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (mind)

Beispiel:

Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßig exzessiven Alkoholgenuss bei 9% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 90%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?

Lösung einblenden
nP(X≤k)
......
130.3293
140.1255
150.0399
......

Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.91 und variablem n.

Es muss gelten: P0.91n (X12) ≥ 0.9

Weil man ja aber P0.91n (X12) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.91n (X12) = 1 - P0.91n (X11) ≥ 0.9 |+ P0.91n (X11) - 0.9

0.1 ≥ P0.91n (X11) oder P0.91n (X11) ≤ 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 91% der Versuche mit einem Treffer. Also müssten dann doch bei 12 0.91 ≈ 13 Versuchen auch ungefähr 12 (≈0.91⋅13) Treffer auftreten.

Wir berechnen also mit unserem ersten n=13:
P0.91n (X11) ≈ 0.3293 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=15 die gesuchte Wahrscheinlichkeit unter 0.1 ist.

n muss also mindestens 15 sein, damit P0.91n (X11) ≤ 0.1 oder eben P0.91n (X12) ≥ 0.9 gilt.

Binomialvert. mit variablem p (diskret)

Beispiel:

In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 29 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 90% unter den 29 gezogenen Kugeln nicht mehr als 21 schwarze sind?

Lösung einblenden
pP(X≤21)
......
2 4 0.9959
3 5 0.943
4 6 0.8014
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=29 und unbekanntem Parameter p.

Es muss gelten: Pp29 (X21) = 0.9 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 2 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp29 (X21) ('höchstens 21 Treffer bei 29 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 2 4 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 3 5 die gesuchte Wahrscheinlichkeit über 90% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 3 sein.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Eine Fluggesellschaft geht davon aus, dass 16% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 23-Platzmaschine höchstens verkaufen, so dass es zu mindestens 80% Wahrscheinlichkeit zu keiner Überbelegung kommt.

Lösung einblenden
nP(X≤k)
......
260.8093
270.6471
......

Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.84 und variablem n.

Es muss gelten: P0.84n (X23) ≥ 0.8

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 84% der Versuche mit einem Treffer. Also müssten dann doch bei 23 0.84 ≈ 27 Versuchen auch ungefähr 23 (≈0.84⋅27) Treffer auftreten.

Wir berechnen also mit unserem ersten n=27:
P0.84n (X23) ≈ 0.6471 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=26 die gesuchte Wahrscheinlichkeit über 80% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,6. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 70% 29 mal oder öfters in den grünen Bereich zu kommen?

Lösung einblenden
nP(X≤k)
......
480.4609
490.3931
500.3299
510.2723
......

Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.6 und variablem n.

Es muss gelten: P0.6n (X29) ≥ 0.7

Weil man ja aber P0.6n (X29) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.6n (X29) = 1 - P0.6n (X28) ≥ 0.7 |+ P0.6n (X28) - 0.7

0.3 ≥ P0.6n (X28) oder P0.6n (X28) ≤ 0.3

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 60% der Versuche mit einem Treffer. Also müssten dann doch bei 29 0.6 ≈ 48 Versuchen auch ungefähr 29 (≈0.6⋅48) Treffer auftreten.

Wir berechnen also mit unserem ersten n=48:
P0.6n (X28) ≈ 0.4609 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=51 die gesuchte Wahrscheinlichkeit unter 0.3 ist.

n muss also mindestens 51 sein, damit P0.6n (X28) ≤ 0.3 oder eben P0.6n (X29) ≥ 0.7 gilt.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 15% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 75 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 15% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
......
20.0005
30.0024
40.0084
50.0234
60.0544
70.1082
80.1889
90.2949
100.4184
110.5472
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.15 und n = 75.

Es muss gelten: P0.1575 (Xk) < 0.15

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 7 immer noch weniger als 0.15 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1575 (X8) nimmt mit 18.89% einen Wert über 0.15 an.

Das größtmögliche k mit P0.1575 (Xk) < 0.15 ist somit k = 7.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 7 sein.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 6%. Für einen bestimmten Betrag darf man 10 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 7% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.5386
10.8824
20.9812
30.998
40.9998
51
61
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.06 und n = 10.

Es muss gelten: P0.0610 (Xk) < 0.07 (oranger Bereich)

oder andersrum ausgedrückt: P0.0610 (Xk-1) ≥ 0.93 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 1 immer noch weniger als 0.93 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.0610 (X2) nimmt mit 98.12% einen Wert über 0.93 an.

Das kleinstmögliche k mit P0.0610 (Xk) = 1 - P0.0610 (Xk-1) < 0.07 ist somit k = 3.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 3 sein.

0
1
2
3
4
5
6
7
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 17% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 85 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 10% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
......
40.0006
50.0022
60.0064
70.0163
80.036
90.0706
100.1244
110.1995
120.2944
130.4036
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.17 und n = 85.

Es muss gelten: P0.1785 (Xk) < 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 9 immer noch weniger als 0.1 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1785 (X10) nimmt mit 12.44% einen Wert über 0.1 an.

Das größtmögliche k mit P0.1785 (Xk) < 0.1 ist somit k = 9.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 9 sein.

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)