Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (höchst.)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 45%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 70% Wahrscheinlichkeit nicht mehr als 21 grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
430.7458
440.6978
450.6474
460.5954
470.5427
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.45 und variablem n.

Es muss gelten: P0.45n (X21) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 45% der Versuche mit einem Treffer. Also müssten dann doch bei 21 0.45 ≈ 47 Versuchen auch ungefähr 21 (≈0.45⋅47) Treffer auftreten.

Wir berechnen also mit unserem ersten n=47:
P0.45n (X21) ≈ 0.5427 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=43 die gesuchte Wahrscheinlichkeit über 70% ist.

Binomialvert. mit variablem p (diskret)

Beispiel:

Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 7 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 50 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 7 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 75% für die 50 Durchgänge reichen?

Lösung einblenden
pP(X≤7)
......
1 7 0.576
1 8 0.7165
1 9 0.8136
......

Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.

Es muss gelten: Pp50 (X7) =0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp50 (X7) ('höchstens 7 Treffer bei 50 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 7 50 . Mit diesem p wäre ja 7= 7 50 ⋅50 der Erwartungswert und somit Pp50 (X7) irgendwo in der nähe von 50%. Wenn wir nun p= 7 50 mit 1 7 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 7 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 9 die gesuchte Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens 9 sein.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Beim MI6 (Arbeitsplatz von James Bond 007) soll eine Projektgruppe zur Aushebung einer multinationalen Superschurkenvereinigung eingerichtet werden. Bisherige Studien haben ergeben, dass diese kriminelle Vereinigung bereits alle wichtigen Regierungsbehörden infiltriert hat. Man geht davon aus, dass bereits jeder 50. MI6-Angestellte ein Spitzel dieser Organisiation ist. Wie groß darf diese Gruppe nun sein, so dass mit einer Wahrscheinlichkeit von mindestens 50% kein Spitzel in dieser Projektgruppe ist?

Lösung einblenden
nP(X≤k)
......
290.5566
300.5455
310.5346
320.5239
330.5134
340.5031
350.4931
......

Die Zufallsgröße X gibt Anzahl der Spitzel unter den MI6-Angestellten an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.

Es muss gelten: P0.02n (X0) ≥ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.02 ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.02n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=34 die gesuchte Wahrscheinlichkeit über 50% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßig exzessiven Alkoholgenuss bei 7% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 50%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?

Lösung einblenden
nP(X≤k)
......
120.5814
130.2298
......

Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.93 und variablem n.

Es muss gelten: P0.93n (X12) ≥ 0.5

Weil man ja aber P0.93n (X12) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.93n (X12) = 1 - P0.93n (X11) ≥ 0.5 |+ P0.93n (X11) - 0.5

0.5 ≥ P0.93n (X11) oder P0.93n (X11) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 93% der Versuche mit einem Treffer. Also müssten dann doch bei 12 0.93 ≈ 13 Versuchen auch ungefähr 12 (≈0.93⋅13) Treffer auftreten.

Wir berechnen also mit unserem ersten n=13:
P0.93n (X11) ≈ 0.2298 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=13 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 13 sein, damit P0.93n (X11) ≤ 0.5 oder eben P0.93n (X12) ≥ 0.5 gilt.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 13% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 60 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 20% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
00.0002
10.0023
20.0116
30.0385
40.0956
50.1912
60.3222
70.4732
80.6227
90.7517
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.13 und n = 60.

Es muss gelten: P0.1360 (Xk) < 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 5 immer noch weniger als 0.2 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1360 (X6) nimmt mit 32.22% einen Wert über 0.2 an.

Das größtmögliche k mit P0.1360 (Xk) < 0.2 ist somit k = 5.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 5 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 5%. Für einen bestimmten Betrag darf man 10 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 5% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.5987
10.9139
20.9885
30.999
40.9999
51
61
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.05 und n = 10.

Es muss gelten: P0.0510 (Xk) < 0.05 (oranger Bereich)

oder andersrum ausgedrückt: P0.0510 (Xk-1) ≥ 0.95 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 1 immer noch weniger als 0.95 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.0510 (X2) nimmt mit 98.85% einen Wert über 0.95 an.

Das kleinstmögliche k mit P0.0510 (Xk) = 1 - P0.0510 (Xk-1) < 0.05 ist somit k = 3.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 3 sein.

0
1
2
3
4
5
6
7
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 9%. Für einen bestimmten Betrag darf man 18 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 11% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.1831
10.5091
20.7832
30.9277
40.9814
50.9962
60.9994
70.9999
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.09 und n = 18.

Es muss gelten: P0.0918 (Xk) < 0.11 (oranger Bereich)

oder andersrum ausgedrückt: P0.0918 (Xk-1) ≥ 0.89 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 2 immer noch weniger als 0.89 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.0918 (X3) nimmt mit 92.77% einen Wert über 0.89 an.

Das kleinstmögliche k mit P0.0918 (Xk) = 1 - P0.0918 (Xk-1) < 0.11 ist somit k = 4.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 4 sein.

0
1
2
3
4
5
6
7
8
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)