Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (höchst.)

Beispiel:

Im einem Mathekurs beträgt die Wahrscheinlichkeit, dass ein klassischer GeSchwa-Fehler begangen wird, p=0,45. Wie viele Aufgaben kann ein Schüler höchstens machen, damit er mit einer Wahrscheinlichkeit von 70% maximal 36 dieser Fehler begeht?

Lösung einblenden
nP(X≤k)
......
760.7029
770.6651
780.6262
790.5864
800.5462
......

Die Zufallsgröße X gibt Anzahl der begangenen GeSchwa-Fehler an und ist im Idealfall binomialverteilt mit p = 0.45 und variablem n.

Es muss gelten: P0.45n (X36) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 45% der Versuche mit einem Treffer. Also müssten dann doch bei 36 0.45 ≈ 80 Versuchen auch ungefähr 36 (≈0.45⋅80) Treffer auftreten.

Wir berechnen also mit unserem ersten n=80:
P0.45n (X36) ≈ 0.5462 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=76 die gesuchte Wahrscheinlichkeit über 70% ist.

Binomialvert. mit variablem p (diskret)

Beispiel:

Ein neuer Multiple Choice Test mit 16 verschiedenen Fragen soll entwickelt werden. Dabei muss immer genau eine von mehreren Antwortmöglichkeiten richtig sein. Die Anzahl an Antwortmöglichkeiten soll bei allen Fragen gleich sein. Insgesamt soll der Test so konzipiert sein, dass die Wahrscheinlichkeit mehr als 2 Fragen nur durch Raten zufällig richtig zu beantworten (obwohl man keinerlei Wissen hat) bei höchstens 25% liegt. Bestimme die hierfür notwendige Mindestanzahl an Antwortmöglichkeiten bei jeder Frage.

Lösung einblenden
pP(X≤2)
......
1 8 0.6771
1 9 0.7405
1 10 0.7892
......

Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenenen Antworten an. X ist binomialverteilt mit n=16 und unbekanntem Parameter p.

Es muss gelten: Pp16 (X2) =0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp16 (X2) ('höchstens 2 Treffer bei 16 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 2 16 . Mit diesem p wäre ja 2= 2 16 ⋅16 der Erwartungswert und somit Pp16 (X2) irgendwo in der nähe von 50%. Wenn wir nun p= 2 16 mit 1 2 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 8 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 10 die gesuchte Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl der Antwortmöglichkeiten, muss also mindestens 10 sein.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Beim MI6 (Arbeitsplatz von James Bond 007) soll eine Projektgruppe zur Aushebung einer multinationalen Superschurkenvereinigung eingerichtet werden. Bisherige Studien haben ergeben, dass diese kriminelle Vereinigung bereits alle wichtigen Regierungsbehörden infiltriert hat. Man geht davon aus, dass bereits jeder 50. MI6-Angestellte ein Spitzel dieser Organisiation ist. Wie groß darf diese Gruppe nun sein, so dass mit einer Wahrscheinlichkeit von mindestens 50% kein Spitzel in dieser Projektgruppe ist?

Lösung einblenden
nP(X≤k)
......
290.5566
300.5455
310.5346
320.5239
330.5134
340.5031
350.4931
......

Die Zufallsgröße X gibt Anzahl der Spitzel unter den MI6-Angestellten an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.

Es muss gelten: P0.02n (X0) ≥ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.02 ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.02n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=34 die gesuchte Wahrscheinlichkeit über 50% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Wie oft muss man mit einem normalen Würfel mindestens würfeln, um mit einer Wahrscheinlichkeit von mindestens 80% 21 oder mehr 6er zu erzielen?

Lösung einblenden
nP(X≤k)
......
1410.2533
1420.2418
1430.2306
1440.2198
1450.2093
1460.1992
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X21) ≥ 0.8

Weil man ja aber P 1 6 n (X21) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 6 n (X21) = 1 - P 1 6 n (X20) ≥ 0.8 |+ P 1 6 n (X20) - 0.8

0.2 ≥ P 1 6 n (X20) oder P 1 6 n (X20) ≤ 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 21 1 6 ≈ 126 Versuchen auch ungefähr 21 (≈ 1 6 ⋅126) Treffer auftreten.

Wir berechnen also mit unserem ersten n=126:
P 1 6 n (X20) ≈ 0.463 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=146 die gesuchte Wahrscheinlichkeit unter 0.2 ist.

n muss also mindestens 146 sein, damit P 1 6 n (X20) ≤ 0.2 oder eben P 1 6 n (X21) ≥ 0.8 gilt.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,55. Das Zufallsexperiment soll 97 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 97 Versuchen höchstens k Treffer sind, weniger als 65% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
490.2157
500.2797
510.3519
520.4299
530.5108
540.5915
550.6685
560.7391
570.8012
580.8535
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.55 und n = 97.

Es muss gelten: P0.5597 (Xk) < 0.65

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 54 immer noch weniger als 0.65 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.5597 (X55) nimmt mit 66.85% einen Wert über 0.65 an.

Das größtmögliche k mit P0.5597 (Xk) < 0.65 ist somit k = 54.

größtmöglicher Wert für k muss somit k = 54 sein.

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 45 Fragen gestellt. Bei jeder Frage gibt es 4 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 10% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
100.4089
110.5457
120.6748
130.7841
140.8673
150.9247
160.9605
170.9809
180.9915
190.9965
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 4 und n = 45.

Es muss gelten: P 1 4 45 (Xk) < 0.1 (oranger Bereich)

oder andersrum ausgedrückt: P 1 4 45 (Xk-1) ≥ 0.9 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 14 immer noch weniger als 0.9 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 4 45 (X15) nimmt mit 92.47% einen Wert über 0.9 an.

Das kleinstmögliche k mit P 1 4 45 (Xk) = 1 - P 1 4 45 (Xk-1) < 0.1 ist somit k = 16.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 16 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 35 Fragen gestellt. Bei jeder Frage gibt es 7 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 10% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
30.2435
40.4269
50.6163
60.7742
70.8832
80.9468
90.9786
100.9924
110.9976
120.9993
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 7 und n = 35.

Es muss gelten: P 1 7 35 (Xk) < 0.1 (oranger Bereich)

oder andersrum ausgedrückt: P 1 7 35 (Xk-1) ≥ 0.9 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 7 immer noch weniger als 0.9 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 7 35 (X8) nimmt mit 94.68% einen Wert über 0.9 an.

Das kleinstmögliche k mit P 1 7 35 (Xk) = 1 - P 1 7 35 (Xk-1) < 0.1 ist somit k = 9.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 9 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)