Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (höchst.)

Beispiel:

Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,01. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 50% kein Descepticon unter ihnen ist?

Lösung einblenden
nP(X≤k)
......
630.5309
640.5256
650.5203
660.5151
670.51
680.5049
690.4998
......

Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.01 und variablem n.

Es muss gelten: P0.01n (X0) ≥ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.01 ≈ 0 Versuchen auch ungefähr 0 (≈0.01⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.01n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=68 die gesuchte Wahrscheinlichkeit über 50% ist.

Binomialvert. mit variablem p (diskret)

Beispiel:

In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 20 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 70% unter den 20 gezogenen Kugeln nicht mehr als 3 rote sind?

Lösung einblenden
pP(X≤3)
......
5 33 0.6404
5 34 0.662
5 35 0.6822
5 36 0.7012
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=20 und unbekanntem Parameter p.

Es muss gelten: Pp20 (X3) =0.7 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 5 sein muss, da es ja genau 5 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp20 (X3) ('höchstens 3 Treffer bei 20 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 3 20 . Mit diesem p wäre ja 3= 3 20 ⋅20 der Erwartungswert und somit Pp20 (X3) irgendwo in der nähe von 50%. Wenn wir nun p= 3 20 mit 5 3 erweitern (so dass wir auf den Zähler 5 kommen) und den Nenner abrunden, müssten wir mit p= 5 33 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 5 36 die gesuchte Wahrscheinlichkeit über 70% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens 36 sein.

Also werden noch 31 zusätzliche Optionen (also schwarze Kugeln) benötigt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Beim MI6 (Arbeitsplatz von James Bond 007) soll eine Projektgruppe zur Aushebung einer multinationalen Superschurkenvereinigung eingerichtet werden. Bisherige Studien haben ergeben, dass diese kriminelle Vereinigung bereits alle wichtigen Regierungsbehörden infiltriert hat. Man geht davon aus, dass bereits jeder 50. MI6-Angestellte ein Spitzel dieser Organisiation ist. Wie groß darf diese Gruppe nun sein, so dass mit einer Wahrscheinlichkeit von mindestens 60% kein Spitzel in dieser Projektgruppe ist?

Lösung einblenden
nP(X≤k)
......
200.6676
210.6543
220.6412
230.6283
240.6158
250.6035
260.5914
......

Die Zufallsgröße X gibt Anzahl der Spitzel unter den MI6-Angestellten an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.

Es muss gelten: P0.02n (X0) ≥ 0.6

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.02 ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.02n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=25 die gesuchte Wahrscheinlichkeit über 60% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßig exzessiven Alkoholgenuss bei 11% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 50%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?

Lösung einblenden
nP(X≤k)
......
120.753
130.427
......

Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.89 und variablem n.

Es muss gelten: P0.89n (X12) ≥ 0.5

Weil man ja aber P0.89n (X12) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.89n (X12) = 1 - P0.89n (X11) ≥ 0.5 |+ P0.89n (X11) - 0.5

0.5 ≥ P0.89n (X11) oder P0.89n (X11) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 89% der Versuche mit einem Treffer. Also müssten dann doch bei 12 0.89 ≈ 13 Versuchen auch ungefähr 12 (≈0.89⋅13) Treffer auftreten.

Wir berechnen also mit unserem ersten n=13:
P0.89n (X11) ≈ 0.427 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=13 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 13 sein, damit P0.89n (X11) ≤ 0.5 oder eben P0.89n (X12) ≥ 0.5 gilt.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,9. Das Zufallsexperiment soll 91 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 91 Versuchen höchstens k Treffer sind, weniger als 50% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
760.0363
770.0683
780.12
790.1966
800.3
810.4264
820.5651
830.7004
840.8164
850.9024
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.9 und n = 91.

Es muss gelten: P0.991 (Xk) < 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 81 immer noch weniger als 0.5 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.991 (X82) nimmt mit 56.51% einen Wert über 0.5 an.

Das größtmögliche k mit P0.991 (Xk) < 0.5 ist somit k = 81.

größtmöglicher Wert für k muss somit k = 81 sein.

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 15%. Für einen bestimmten Betrag darf man 14 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 9% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.1028
10.3567
20.6479
30.8535
40.9533
50.9885
60.9978
70.9997
81
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.15 und n = 14.

Es muss gelten: P0.1514 (Xk) < 0.09 (oranger Bereich)

oder andersrum ausgedrückt: P0.1514 (Xk-1) ≥ 0.91 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 3 immer noch weniger als 0.91 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1514 (X4) nimmt mit 95.33% einen Wert über 0.91 an.

Das kleinstmögliche k mit P0.1514 (Xk) = 1 - P0.1514 (Xk-1) < 0.09 ist somit k = 5.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 5 sein.

0
1
2
3
4
5
6
7
8
9
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,85. Das Zufallsexperiment soll 67 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 67 Versuchen höchstens k Treffer sind, weniger als 50% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
510.0369
520.0692
530.1211
540.1974
550.2995
560.4235
570.5591
580.6915
590.806
600.8926
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.85 und n = 67.

Es muss gelten: P0.8567 (Xk) < 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 56 immer noch weniger als 0.5 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.8567 (X57) nimmt mit 55.91% einen Wert über 0.5 an.

Das größtmögliche k mit P0.8567 (Xk) < 0.5 ist somit k = 56.

größtmöglicher Wert für k muss somit k = 56 sein.

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)