Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,65.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 60% Wahrscheinlichkeit, höchstens 28 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
420.6456
430.5635
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.65 und variablem n.

Es muss gelten: P0.65n (X28) ≥ 0.6

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 65% der Versuche mit einem Treffer. Also müssten dann doch bei 28 0.65 ≈ 43 Versuchen auch ungefähr 28 (≈0.65⋅43) Treffer auftreten.

Wir berechnen also mit unserem ersten n=43:
P0.65n (X28) ≈ 0.5635 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=42 die gesuchte Wahrscheinlichkeit über 60% ist.

Binomialvert. mit variablem p (diskret)

Beispiel:

Ein neuer Multiple Choice Test mit 13 verschiedenen Fragen soll entwickelt werden. Dabei muss immer genau eine von mehreren Antwortmöglichkeiten richtig sein. Die Anzahl an Antwortmöglichkeiten soll bei allen Fragen gleich sein. Insgesamt soll der Test so konzipiert sein, dass die Wahrscheinlichkeit mehr als 2 Fragen nur durch Raten zufällig richtig zu beantworten (obwohl man keinerlei Wissen hat) bei höchstens 25% liegt. Bestimme die hierfür notwendige Mindestanzahl an Antwortmöglichkeiten bei jeder Frage.

Lösung einblenden
pP(X≤2)
......
1 6 0.6281
1 7 0.7189
1 8 0.7841
......

Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenenen Antworten an. X ist binomialverteilt mit n=13 und unbekanntem Parameter p.

Es muss gelten: Pp13 (X2) =0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp13 (X2) ('höchstens 2 Treffer bei 13 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 2 13 . Mit diesem p wäre ja 2= 2 13 ⋅13 der Erwartungswert und somit Pp13 (X2) irgendwo in der nähe von 50%. Wenn wir nun p= 2 13 mit 1 2 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 6 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 8 die gesuchte Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl der Antwortmöglichkeiten, muss also mindestens 8 sein.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Wie oft darf man mit einem normalen Würfel höchstens würfeln, um mit einer Wahrscheinlichkeit von 80% nicht mehr als 34 6er zu würfeln?

Lösung einblenden
nP(X≤k)
......
1810.8079
1820.7984
1830.7886
1840.7787
1850.7685
1860.7581
1870.7474
1880.7366
1890.7256
1900.7145
1910.7031
1920.6916
1930.68
1940.6682
1950.6563
1960.6443
1970.6322
1980.62
1990.6077
2000.5953
2010.583
2020.5705
2030.5581
2040.5456
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X34) ≥ 0.8

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 34 1 6 ≈ 204 Versuchen auch ungefähr 34 (≈ 1 6 ⋅204) Treffer auftreten.

Wir berechnen also mit unserem ersten n=204:
P 1 6 n (X34) ≈ 0.5456 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=181 die gesuchte Wahrscheinlichkeit über 80% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Die Firma Apple hat ein neues geniales Produkt, die iYacht, auf den Markt gebracht (wenn auch nicht ganz günstig). Die hierfür beauftragte Marketingagentur garantiert, dass unter denen, denen sie die Yacht vorgeführt hat, der Anteil der späteren Käufer bei 12% liegt. Wie vielen Personen muss nun dieses Produkt mindestens vorgeführt werden, damit sich mit mind. 60% Wahrscheinlichkeit, 25 oder mehr Käufer für dieses Produkt finden?

Lösung einblenden
nP(X≤k)
......
2110.4414
2120.4315
2130.4216
2140.4118
2150.4021
2160.3925
......

Die Zufallsgröße X gibt Anzahl der Käufer an und ist im Idealfall binomialverteilt mit p = 0.12 und variablem n.

Es muss gelten: P0.12n (X25) ≥ 0.6

Weil man ja aber P0.12n (X25) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.12n (X25) = 1 - P0.12n (X24) ≥ 0.6 |+ P0.12n (X24) - 0.6

0.4 ≥ P0.12n (X24) oder P0.12n (X24) ≤ 0.4

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 12% der Versuche mit einem Treffer. Also müssten dann doch bei 25 0.12 ≈ 208 Versuchen auch ungefähr 25 (≈0.12⋅208) Treffer auftreten.

Wir berechnen also mit unserem ersten n=208:
P0.12n (X24) ≈ 0.4716 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=216 die gesuchte Wahrscheinlichkeit unter 0.4 ist.

n muss also mindestens 216 sein, damit P0.12n (X24) ≤ 0.4 oder eben P0.12n (X25) ≥ 0.6 gilt.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 16% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 65 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 25% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
......
20.0011
30.0047
40.0153
50.0401
60.0874
70.1632
80.2679
90.3942
100.5289
110.6572
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.16 und n = 65.

Es muss gelten: P0.1665 (Xk) < 0.25

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 7 immer noch weniger als 0.25 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1665 (X8) nimmt mit 26.79% einen Wert über 0.25 an.

Das größtmögliche k mit P0.1665 (Xk) < 0.25 ist somit k = 7.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 7 sein.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 7%. Für einen bestimmten Betrag darf man 14 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 7% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.362
10.7436
20.9302
30.9864
40.998
50.9998
61
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.07 und n = 14.

Es muss gelten: P0.0714 (Xk) < 0.07 (oranger Bereich)

oder andersrum ausgedrückt: P0.0714 (Xk-1) ≥ 0.93 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 1 immer noch weniger als 0.93 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.0714 (X2) nimmt mit 93.02% einen Wert über 0.93 an.

Das kleinstmögliche k mit P0.0714 (Xk) = 1 - P0.0714 (Xk-1) < 0.07 ist somit k = 3.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 3 sein.

0
1
2
3
4
5
6
7
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 13%. Für einen bestimmten Betrag darf man 18 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 7% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.0815
10.3008
20.5794
30.8014
40.9257
50.9778
60.9946
70.9989
80.9998
91
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.13 und n = 18.

Es muss gelten: P0.1318 (Xk) < 0.07 (oranger Bereich)

oder andersrum ausgedrückt: P0.1318 (Xk-1) ≥ 0.93 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 4 immer noch weniger als 0.93 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1318 (X5) nimmt mit 97.78% einen Wert über 0.93 an.

Das kleinstmögliche k mit P0.1318 (Xk) = 1 - P0.1318 (Xk-1) < 0.07 ist somit k = 6.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 6 sein.

0
1
2
3
4
5
6
7
8
9
10
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)