Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,65.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 60% Wahrscheinlichkeit, höchstens 28 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
42 | 0.6456 |
43 | 0.5635 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.65 und variablem n.
Es muss gelten: ≥ 0.6
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 65% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 43 Versuchen auch ungefähr 28 (≈0.65⋅43) Treffer auftreten.
Wir berechnen also mit unserem ersten n=43:
≈ 0.5635
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=42 die gesuchte Wahrscheinlichkeit über 60% ist.
Binomialvert. mit variablem p (diskret)
Beispiel:
Ein neuer Multiple Choice Test mit 13 verschiedenen Fragen soll entwickelt werden. Dabei muss immer genau eine von mehreren Antwortmöglichkeiten richtig sein. Die Anzahl an Antwortmöglichkeiten soll bei allen Fragen gleich sein. Insgesamt soll der Test so konzipiert sein, dass die Wahrscheinlichkeit mehr als 2 Fragen nur durch Raten zufällig richtig zu beantworten (obwohl man keinerlei Wissen hat) bei höchstens 25% liegt. Bestimme die hierfür notwendige Mindestanzahl an Antwortmöglichkeiten bei jeder Frage.
p | P(X≤2) |
---|---|
... | ... |
0.6281 | |
0.7189 | |
0.7841 | |
... | ... |
Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenenen Antworten an. X ist binomialverteilt mit n=13 und unbekanntem Parameter p.
Es muss gelten: =0.75 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 2 Treffer bei 13 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 2=⋅13 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl der Antwortmöglichkeiten, muss also mindestens
8 sein.
Binomialvert. mit variablem n (höchst.)
Beispiel:
Wie oft darf man mit einem normalen Würfel höchstens würfeln, um mit einer Wahrscheinlichkeit von 80% nicht mehr als 34 6er zu würfeln?
n | P(X≤k) |
---|---|
... | ... |
181 | 0.8079 |
182 | 0.7984 |
183 | 0.7886 |
184 | 0.7787 |
185 | 0.7685 |
186 | 0.7581 |
187 | 0.7474 |
188 | 0.7366 |
189 | 0.7256 |
190 | 0.7145 |
191 | 0.7031 |
192 | 0.6916 |
193 | 0.68 |
194 | 0.6682 |
195 | 0.6563 |
196 | 0.6443 |
197 | 0.6322 |
198 | 0.62 |
199 | 0.6077 |
200 | 0.5953 |
201 | 0.583 |
202 | 0.5705 |
203 | 0.5581 |
204 | 0.5456 |
... | ... |
Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.8
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 204 Versuchen auch ungefähr 34
(≈
Wir berechnen also mit unserem ersten n=204:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=181 die gesuchte Wahrscheinlichkeit über 80% ist.
Binomialvert. mit variablem n (mind)
Beispiel:
Die Firma Apple hat ein neues geniales Produkt, die iYacht, auf den Markt gebracht (wenn auch nicht ganz günstig). Die hierfür beauftragte Marketingagentur garantiert, dass unter denen, denen sie die Yacht vorgeführt hat, der Anteil der späteren Käufer bei 12% liegt. Wie vielen Personen muss nun dieses Produkt mindestens vorgeführt werden, damit sich mit mind. 60% Wahrscheinlichkeit, 25 oder mehr Käufer für dieses Produkt finden?
n | P(X≤k) |
---|---|
... | ... |
211 | 0.4414 |
212 | 0.4315 |
213 | 0.4216 |
214 | 0.4118 |
215 | 0.4021 |
216 | 0.3925 |
... | ... |
Die Zufallsgröße X gibt Anzahl der Käufer an und ist im Idealfall binomialverteilt mit p = 0.12 und variablem n.
Es muss gelten:
Weil man ja aber
0.4 ≥
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 12% der Versuche mit einem Treffer.
Also müssten dann doch bei
Wir berechnen also mit unserem ersten n=208:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=216 die gesuchte Wahrscheinlichkeit unter 0.4 ist.
n muss also mindestens 216 sein, damit
Binomialvert. mit variablem k (höchst.)
Beispiel:
Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 16% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 65 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 25% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?
k | P(X≤k) |
---|---|
... | ... |
2 | 0.0011 |
3 | 0.0047 |
4 | 0.0153 |
5 | 0.0401 |
6 | 0.0874 |
7 | 0.1632 |
8 | 0.2679 |
9 | 0.3942 |
10 | 0.5289 |
11 | 0.6572 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.16 und n = 65.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
7 immer noch weniger als 0.25 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das größtmögliche k mit
Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 7 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 7%. Für einen bestimmten Betrag darf man 14 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 7% ausgegeben werden muss?
k | P(X≤k) |
---|---|
0 | 0.362 |
1 | 0.7436 |
2 | 0.9302 |
3 | 0.9864 |
4 | 0.998 |
5 | 0.9998 |
6 | 1 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.07 und n = 14.
Es muss gelten:
oder andersrum ausgedrückt:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
1 immer noch weniger als 0.93 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das kleinstmögliche k mit
Die Mindestanzahl der getroffenenen Bälle muss somit k = 3 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 13%. Für einen bestimmten Betrag darf man 18 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 7% ausgegeben werden muss?
k | P(X≤k) |
---|---|
0 | 0.0815 |
1 | 0.3008 |
2 | 0.5794 |
3 | 0.8014 |
4 | 0.9257 |
5 | 0.9778 |
6 | 0.9946 |
7 | 0.9989 |
8 | 0.9998 |
9 | 1 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.13 und n = 18.
Es muss gelten:
oder andersrum ausgedrückt:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
4 immer noch weniger als 0.93 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das kleinstmögliche k mit
Die Mindestanzahl der getroffenenen Bälle muss somit k = 6 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)