Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (höchst.)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 90%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 70% Wahrscheinlichkeit nicht mehr als 40 grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
430.8176
440.6534
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.9 und variablem n.

Es muss gelten: P0.9n (X40) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 90% der Versuche mit einem Treffer. Also müssten dann doch bei 40 0.9 ≈ 44 Versuchen auch ungefähr 40 (≈0.9⋅44) Treffer auftreten.

Wir berechnen also mit unserem ersten n=44:
P0.9n (X40) ≈ 0.6534 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=43 die gesuchte Wahrscheinlichkeit über 70% ist.

Binomialvert. mit variablem p (diskret)

Beispiel:

Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 9 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 75 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 9 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 85% für die 75 Durchgänge reichen?

Lösung einblenden
pP(X≤9)
......
1 8 0.5349
1 9 0.6798
1 10 0.7858
1 11 0.8586
......

Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=75 und unbekanntem Parameter p.

Es muss gelten: Pp75 (X9) =0.85 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp75 (X9) ('höchstens 9 Treffer bei 75 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 9 75 . Mit diesem p wäre ja 9= 9 75 ⋅75 der Erwartungswert und somit Pp75 (X9) irgendwo in der nähe von 50%. Wenn wir nun p= 9 75 mit 1 9 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 8 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 11 die gesuchte Wahrscheinlichkeit über 85% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens 11 sein.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,4.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, höchstens 25 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
520.9074
530.8854
540.8604
550.8325
560.8018
570.7685
580.7329
590.6953
600.6563
610.6161
620.5752
630.5341
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.4 und variablem n.

Es muss gelten: P0.4n (X25) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 40% der Versuche mit einem Treffer. Also müssten dann doch bei 25 0.4 ≈ 63 Versuchen auch ungefähr 25 (≈0.4⋅63) Treffer auftreten.

Wir berechnen also mit unserem ersten n=63:
P0.4n (X25) ≈ 0.5341 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=52 die gesuchte Wahrscheinlichkeit über 90% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Wie oft muss man mit einem normalen Würfel mindestens würfeln, um mit einer Wahrscheinlichkeit von mindestens 70% 37 oder mehr 6er zu erzielen?

Lösung einblenden
nP(X≤k)
......
2330.3469
2340.3363
2350.3259
2360.3156
2370.3055
2380.2956
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X37) ≥ 0.7

Weil man ja aber P 1 6 n (X37) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 6 n (X37) = 1 - P 1 6 n (X36) ≥ 0.7 |+ P 1 6 n (X36) - 0.7

0.3 ≥ P 1 6 n (X36) oder P 1 6 n (X36) ≤ 0.3

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 37 1 6 ≈ 222 Versuchen auch ungefähr 37 (≈ 1 6 ⋅222) Treffer auftreten.

Wir berechnen also mit unserem ersten n=222:
P 1 6 n (X36) ≈ 0.4721 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=238 die gesuchte Wahrscheinlichkeit unter 0.3 ist.

n muss also mindestens 238 sein, damit P 1 6 n (X36) ≤ 0.3 oder eben P 1 6 n (X37) ≥ 0.7 gilt.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 11% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 65 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 25% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
00.0005
10.0046
20.0209
30.0633
40.1444
50.2666
60.4178
70.5752
80.7163
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.11 und n = 65.

Es muss gelten: P0.1165 (Xk) < 0.25

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 4 immer noch weniger als 0.25 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1165 (X5) nimmt mit 26.66% einen Wert über 0.25 an.

Das größtmögliche k mit P0.1165 (Xk) < 0.25 ist somit k = 4.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 4 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 13%. Für einen bestimmten Betrag darf man 14 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 10% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.1423
10.4401
20.7292
30.9021
40.9731
50.9943
60.9991
70.9999
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.13 und n = 14.

Es muss gelten: P0.1314 (Xk) < 0.1 (oranger Bereich)

oder andersrum ausgedrückt: P0.1314 (Xk-1) ≥ 0.9 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 2 immer noch weniger als 0.9 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1314 (X3) nimmt mit 90.21% einen Wert über 0.9 an.

Das kleinstmögliche k mit P0.1314 (Xk) = 1 - P0.1314 (Xk-1) < 0.1 ist somit k = 4.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 4 sein.

0
1
2
3
4
5
6
7
8
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 11% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 80 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 20% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
00.0001
10.001
20.0053
30.0192
40.0521
50.1141
60.2098
70.3349
80.476
90.6155
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.11 und n = 80.

Es muss gelten: P0.1180 (Xk) < 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 5 immer noch weniger als 0.2 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1180 (X6) nimmt mit 20.98% einen Wert über 0.2 an.

Das größtmögliche k mit P0.1180 (Xk) < 0.2 ist somit k = 5.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 5 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)