Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (mind)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,35.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, mindestens 31 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
100 | 0.173 |
101 | 0.1557 |
102 | 0.1397 |
103 | 0.125 |
104 | 0.1115 |
105 | 0.0992 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.35 und variablem n.
Es muss gelten: ≥ 0.9
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.9 |+ - 0.9
0.1 ≥ oder ≤ 0.1
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 35% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 89 Versuchen auch ungefähr 31 (≈0.35⋅89) Treffer auftreten.
Wir berechnen also mit unserem ersten n=89:
≈ 0.447
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=105 die gesuchte Wahrscheinlichkeit unter 0.1 ist.
n muss also mindestens 105 sein, damit ≤ 0.1 oder eben ≥ 0.9 gilt.
Binomialvert. mit variablem p (diskret)
Beispiel:
In einer Urne sind 3 rote und einige schwarze Kugeln. Es soll 15 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 70% unter den 15 gezogenen Kugeln nicht mehr als 6 rote sind?
p | P(X≤6) |
---|---|
... | ... |
0.5199 | |
0.6852 | |
0.797 | |
... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=15 und unbekanntem Parameter p.
Es muss gelten: =0.7 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 3 sein muss, da es ja genau 3 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 6 Treffer bei 15 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 6=⋅15 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 3 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 70% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens
9 sein.
Also werden noch 6 zusätzliche Optionen (also schwarze Kugeln) benötigt.
Binomialvert. mit variablem n (höchst.)
Beispiel:
Beim MI6 (Arbeitsplatz von James Bond 007) soll eine Projektgruppe zur Aushebung einer multinationalen Superschurkenvereinigung eingerichtet werden. Bisherige Studien haben ergeben, dass diese kriminelle Vereinigung bereits alle wichtigen Regierungsbehörden infiltriert hat. Man geht davon aus, dass bereits jeder 50. MI6-Angestellte ein Spitzel dieser Organisiation ist. Wie groß darf diese Gruppe nun sein, so dass mit einer Wahrscheinlichkeit von mindestens 70% kein Spitzel in dieser Projektgruppe ist?
n | P(X≤k) |
---|---|
... | ... |
12 | 0.7847 |
13 | 0.769 |
14 | 0.7536 |
15 | 0.7386 |
16 | 0.7238 |
17 | 0.7093 |
18 | 0.6951 |
... | ... |
Die Zufallsgröße X gibt Anzahl der Spitzel unter den MI6-Angestellten an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.
Es muss gelten: ≥ 0.7
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.
Wir berechnen also mit unserem ersten n=0:
≈ 1
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=17 die gesuchte Wahrscheinlichkeit über 70% ist.
Binomialvert. mit variablem n (mind)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,85.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 60% Wahrscheinlichkeit, mindestens 21 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
24 | 0.4951 |
25 | 0.3179 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.85 und variablem n.
Es muss gelten: ≥ 0.6
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.6 |+ - 0.6
0.4 ≥ oder ≤ 0.4
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 85% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 25 Versuchen auch ungefähr 21 (≈0.85⋅25) Treffer auftreten.
Wir berechnen also mit unserem ersten n=25:
≈ 0.3179
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=25 die gesuchte Wahrscheinlichkeit unter 0.4 ist.
n muss also mindestens 25 sein, damit ≤ 0.4 oder eben ≥ 0.6 gilt.
Binomialvert. mit variablem k (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,7. Das Zufallsexperiment soll 56 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 56 Versuchen höchstens k Treffer sind, weniger als 50% betragen. Bestimme den größtmöglichen Wert für k.
k | P(X≤k) |
---|---|
... | ... |
33 | 0.051 |
34 | 0.0874 |
35 | 0.1408 |
36 | 0.2134 |
37 | 0.3051 |
38 | 0.4119 |
39 | 0.527 |
40 | 0.6412 |
41 | 0.7451 |
42 | 0.8317 |
... | ... |
Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.7 und n = 56.
Es muss gelten: < 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 38 immer noch weniger als 0.5 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 52.7% einen Wert über 0.5 an.
Das größtmögliche k mit < 0.5 ist somit k = 38.
größtmöglicher Wert für k muss somit k = 38 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 15%. Für einen bestimmten Betrag darf man 14 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 7% ausgegeben werden muss?
k | P(X≤k) |
---|---|
0 | 0.1028 |
1 | 0.3567 |
2 | 0.6479 |
3 | 0.8535 |
4 | 0.9533 |
5 | 0.9885 |
6 | 0.9978 |
7 | 0.9997 |
8 | 1 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.15 und n = 14.
Es muss gelten: < 0.07 (oranger Bereich)
oder andersrum ausgedrückt: ≥ 0.93 (blauer Bereich)
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 3 immer noch weniger als 0.93 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 95.33% einen Wert über 0.93 an.
Das kleinstmögliche k mit = 1 - < 0.07 ist somit k = 5.
Die Mindestanzahl der getroffenenen Bälle muss somit k = 5 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (höchst.)
Beispiel:
Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 12% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 95 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 20% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?
k | P(X≤k) |
---|---|
... | ... |
3 | 0.0024 |
4 | 0.0082 |
5 | 0.0228 |
6 | 0.0525 |
7 | 0.104 |
8 | 0.1813 |
9 | 0.2832 |
10 | 0.4027 |
11 | 0.5287 |
12 | 0.6489 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.12 und n = 95.
Es muss gelten: < 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 8 immer noch weniger als 0.2 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 28.32% einen Wert über 0.2 an.
Das größtmögliche k mit < 0.2 ist somit k = 8.
Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 8 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)