Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (mind)

Beispiel:

In Tschechien gilt absolutes Alkoholverbot in Lokalen für Jugendliche unter 18 Jahren. Ein paar trinkfreudige 17-jährige Jugendliche wollen bei einer Studienfahrt nach Prag trotzdem ihr Glück versuchen. 91% der Gaststätten setzen das Alkoholverbot konsequent um und schenken nur gegen Vorlage einer "ID" (Personalausweis) Bier aus. Wie viele Kneipen müssen die Jugenlichen nun mindestens aufsuchen, damit sie bei einer Kneipentour mit mindestens 70% Wahrscheinlichkeit in mindestens 5 Lokalen nicht mit Nachfragen zu ihrer "ID" gedemütigt werden und in Ruhe ein Bier trinken können?

Lösung einblenden
nP(X≤k)
......
600.3627
610.3481
620.3338
630.3199
640.3064
650.2934
......

Die Zufallsgröße X gibt die Anzahl der besuchten Kneipen, die keine "ID" (Personalausweis) verlangen an und ist im Idealfall binomialverteilt mit p = 0.09 und variablem n.

Es muss gelten: P0.09n (X5) ≥ 0.7

Weil man ja aber P0.09n (X5) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.09n (X5) = 1 - P0.09n (X4) ≥ 0.7 |+ P0.09n (X4) - 0.7

0.3 ≥ P0.09n (X4) oder P0.09n (X4) ≤ 0.3

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 9% der Versuche mit einem Treffer. Also müssten dann doch bei 5 0.09 ≈ 56 Versuchen auch ungefähr 5 (≈0.09⋅56) Treffer auftreten.

Wir berechnen also mit unserem ersten n=56:
P0.09n (X4) ≈ 0.4249 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=65 die gesuchte Wahrscheinlichkeit unter 0.3 ist.

n muss also mindestens 65 sein, damit P0.09n (X4) ≤ 0.3 oder eben P0.09n (X5) ≥ 0.7 gilt.

Binomialvert. mit variablem p (diskret)

Beispiel:

Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 6er-Packung mit der mindestens 50% Wahrscheinlichkeit 1 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?

Lösung einblenden
pP(X≥1)=1-P(X≤0)
......
1 2 0.9844
1 3 0.9122
1 4 0.822
1 5 0.7379
1 6 0.6651
1 7 0.6034
1 8 0.5512
1 9 0.5067
1 10 0.4686
......

Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=6 und unbekanntem Parameter p.

Es muss gelten: Pp6 (X1) = 1- Pp6 (X0) = 0.5 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp6 (X1) ('mindestens 1 Treffer bei 6 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 1 2 .

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 1 9 die gesuchte Wahrscheinlichkeit über 50% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens 9 sein.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,3.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 70% Wahrscheinlichkeit, höchstens 29 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
900.7207
910.6965
920.6716
930.6461
940.6202
950.594
960.5676
970.5411
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.3 und variablem n.

Es muss gelten: P0.3n (X29) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 30% der Versuche mit einem Treffer. Also müssten dann doch bei 29 0.3 ≈ 97 Versuchen auch ungefähr 29 (≈0.3⋅97) Treffer auftreten.

Wir berechnen also mit unserem ersten n=97:
P0.3n (X29) ≈ 0.5411 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=90 die gesuchte Wahrscheinlichkeit über 70% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßig exzessiven Alkoholgenuss bei 11% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 70%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?

Lösung einblenden
nP(X≤k)
......
130.427
140.1939
......

Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.89 und variablem n.

Es muss gelten: P0.89n (X12) ≥ 0.7

Weil man ja aber P0.89n (X12) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.89n (X12) = 1 - P0.89n (X11) ≥ 0.7 |+ P0.89n (X11) - 0.7

0.3 ≥ P0.89n (X11) oder P0.89n (X11) ≤ 0.3

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 89% der Versuche mit einem Treffer. Also müssten dann doch bei 12 0.89 ≈ 13 Versuchen auch ungefähr 12 (≈0.89⋅13) Treffer auftreten.

Wir berechnen also mit unserem ersten n=13:
P0.89n (X11) ≈ 0.427 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=14 die gesuchte Wahrscheinlichkeit unter 0.3 ist.

n muss also mindestens 14 sein, damit P0.89n (X11) ≤ 0.3 oder eben P0.89n (X12) ≥ 0.7 gilt.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,35. Das Zufallsexperiment soll 64 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 64 Versuchen höchstens k Treffer sind, weniger als 70% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
180.1532
190.2254
200.313
210.4117
220.5157
230.6179
240.7119
250.7929
260.8584
270.9079
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.35 und n = 64.

Es muss gelten: P0.3564 (Xk) < 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 23 immer noch weniger als 0.7 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.3564 (X24) nimmt mit 71.19% einen Wert über 0.7 an.

Das größtmögliche k mit P0.3564 (Xk) < 0.7 ist somit k = 23.

größtmöglicher Wert für k muss somit k = 23 sein.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 30 Fragen gestellt. Bei jeder Frage gibt es 4 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 8% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
60.3481
70.5143
80.6736
90.8034
100.8943
110.9493
120.9784
130.9918
140.9973
150.9992
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 4 und n = 30.

Es muss gelten: P 1 4 30 (Xk) < 0.08 (oranger Bereich)

oder andersrum ausgedrückt: P 1 4 30 (Xk-1) ≥ 0.92 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 10 immer noch weniger als 0.92 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 4 30 (X11) nimmt mit 94.93% einen Wert über 0.92 an.

Das kleinstmögliche k mit P 1 4 30 (Xk) = 1 - P 1 4 30 (Xk-1) < 0.08 ist somit k = 12.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 12 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 25 Fragen gestellt. Bei jeder Frage gibt es 3 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 2% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
80.5376
90.6956
100.822
110.9082
120.9585
130.9836
140.9944
150.9984
160.9996
170.9999
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 3 und n = 25.

Es muss gelten: P 1 3 25 (Xk) < 0.02 (oranger Bereich)

oder andersrum ausgedrückt: P 1 3 25 (Xk-1) ≥ 0.98 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 12 immer noch weniger als 0.98 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 3 25 (X13) nimmt mit 98.36% einen Wert über 0.98 an.

Das kleinstmögliche k mit P 1 3 25 (Xk) = 1 - P 1 3 25 (Xk-1) < 0.02 ist somit k = 14.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 14 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)