Aufgabenbeispiele von Bewegungsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ort nach t Zeiteinheiten
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2min ist er im Punkt B angelangt.
An welchem Ort befindet sich der Heißluftballon nach 7min?
Das Bewegungsobjekt legt in 2min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 7 min befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Strecke nach t Zeiteinheiten
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 1s ist es im Punkt B angelangt.
Welche Strecke hat das Flugzeug nach 2s seit seinem Start zurückgelegt?
Das Bewegungsobjekt legt in 1s den Vektor = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 2 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Das Bewegungsobjekt hat sich dann von A nach P bewegt, also um den Vektor =. Dessen Länge ist m.
Geschwindigkeit in km/h
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2min ist er im Punkt B angelangt.
Gib die Geschwindigkeit des Heißluftballons in km/h an?
Das Bewegungsobjekt legt in 2min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Dieser Vektor hat die Länge =.
Die Geschwindigkeit ist also
v=110
= 6.6
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2s ist es im Punkt B angelangt.
Wann hat das Flugzeug die Höhe von 390m erreicht?
Das Bewegungsobjekt legt in 2s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 20m (Änderung in der x3-Koordinate). Um von 30 auf 390m (also 360m) zu steigen (bzw. fallen), muss es also s = 18s lang steigen (bzw. sinken).
Geschwindigkeit rückwärts
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A und fliegt mit einer Geschwindigkeit von 216km/h in Richtung des Punktes B (alle Koordinatenangaben in Meter).
Wann kommt es im Punkt B an?
Zuerst rechnen wir die Geschwindigkeit von km/h in um: v=
= 60.
Die Länge des Vektors = ist m.
Bei einer Geschwindigkeit von 60. braucht er für diese Strecke
s = 7s.
Punkt B wird als nach 7s erreicht.
Höhe nach x Kilometern
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
Welche Höhe hat das Flugzeug, wenn es 10,8 km zurückgelegt hat?
Das Bewegungsobjekt legt in 3 s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Geradengleichung
beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t s befindet.
Dieser Richtungsvektor (der in 1 s zurückgelegt wird) hat die Länge =.
Die Geschwindigkeit ist also v=90
Für die Strecke von 10.8 km braucht es also s
= 120s
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 1230 (in m).
Abstand zweier Objekte
Beispiel:
Die Position einer Drohne zum Zeitpunkt t ist gegeben durch . (alle Koordinaten in m; t in Sekunden seit Beobachtungsbeginn). Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A . Nach 3s ist sie im Punkt B angelangt. Wie weit sind die Drohne und die Seilbahngondel nach 5s von einander entfernt?
Die Seilbahngondel legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
Die Drohne ist nach 5s an der Stelle P1 = ; Die Seilbahngondel an der Stelle P2 = .
= =
d=|| = =
Der Abstand ist also ca. 11.36 m.
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Wann sind die beiden Flugzeuge auf gleicher Höhe?
Das Flugzeug F2 legt in 4min den Vektor
In 1min legt es also den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
nach 10 min sind also beide auf gleicher
Höhe:
Höhendifferenz der Flugbahnen
Beispiel:
Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A
Es gibt einen Zeitpunkt, an dem die Drohne genau über der Seilbahn ist. Berechne den vertikalen Höhenunterschied zwischen Drohne und Seilbahn an dieser Stelle.
Die Seilbahngondel legt in 3s den Vektor
In 1s legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass die Drohne nach 5s und die Seilbahngondel nach 1s an diesem 'x1-x2-Schnittpunkt' ist.
die Drohne ist also nach 5s bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
2.6 - 1 = 1.6 m
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A
Wann hat der Heißluftballon die Höhe von 820m erreicht?
Das Bewegungsobjekt legt in 3min den Vektor
In 1min legt es also den Vektor
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
In 1min steigt (bzw. sinkt) das Bewegungsobjekt um 20m (Änderung in der x3-Koordinate).
Um von 40 auf 820m (also 780m) zu steigen (bzw. fallen),
muss es also
Höhendifferenz der Flugbahnen
Beispiel:
Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A
Es gibt einen Zeitpunkt, an dem die Drohne genau über der Seilbahn ist. Berechne den vertikalen Höhenunterschied zwischen Drohne und Seilbahn an dieser Stelle.
Die Seilbahngondel legt in 2s den Vektor
In 1s legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass die Drohne nach 4s und die Seilbahngondel nach 2s an diesem 'x1-x2-Schnittpunkt' ist.
die Drohne ist also nach 4s bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
2.2 - 1.2 = 1 m