Aufgabenbeispiele von Summenregel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Summernregel (einfach)

Beispiel:

Berechne die Ableitung von f mit f(x)= x 5 + x 4 +1 und vereinfache:

Lösung einblenden

f(x)= x 5 + x 4 +1

f'(x)= 5 x 4 +4 x 3 +0

= 5 x 4 +4 x 3

Ableiten mit x im Nenner (ohne sin)

Beispiel:

Berechne die Ableitung von f mit f(x)= 5 x -6 x 3 und vereinfache:

Lösung einblenden

f(x)= 5 x -6 x 3

= 5 x -1 -6 x 3

=> f'(x) = -5 x -2 -18 x 2

f'(x)= - 5 x 2 -18 x 2

Ableiten mit Wurzeln (ohne sin)

Beispiel:

Berechne die Ableitung von f mit f(x)= -2 x 4 +3 x und vereinfache:

Lösung einblenden

f(x)= -2 x 4 +3 x

= -2 x 4 +3 x 1 2

=> f'(x) = -8 x 3 + 3 2 x - 1 2

f'(x)= -8 x 3 + 3 2 x

Stelle mit f'(x)=c finden (Bruch im Exp.)

Beispiel:

Bestimme alle Stellen, an denen die Tangente an den Graph der Funktion f mit f(x)= 5 6 ( x 5 ) 6 -9x parallel zur Geraden y = -7x +5 ist.

Falls mehrere Lösungen existieren, diese bitte mit Semikolon (;) trennen.

Lösung einblenden

Die Gerade y = -7x +5 hat als Steigung m = -7 und als y-Achsenabschnitt c = 5 .

Wenn nun an einer Stelle x die Tangente an den Graph von f parallel zur gegebenen Geraden sein soll, müssen ihre Steigungen gleich sein. Es muss also f '(x) = m = -7 gelten.

Zuerst leiten wir mal f(x) ab:

f(x)= 5 6 ( x 5 ) 6 -9x

= 5 6 x 6 5 -9x

=> f'(x) = x 1 5 -9

f'(x)= x 5 -9

Diese Ableitung muss ja = -7 sein, also setzen wir x 5 -9 = -7.

x 5 -9 = -7 | +9
x 5 = 2 |(⋅)5 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
x = 2 5
x = 32

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 32

Linke Seite:

x = 32 in x 5 -9

= 32 5 -9

= 2 -9

= -7

Rechte Seite:

x = 32 in -7

= -7

Also -7 = -7

x = 32 ist somit eine Lösung !

L={ 32 }

Zur Probe, ob wir uns verrechnet haben, können wir die Lösung(en) jetzt in die Ableitung einsetzen:

f '( 32 ) = 32 5 -9 = -7