Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[2;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 2 und x2 = 4 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(2) in den Zähler und die Differenz der x-Werte 4 - 2 in den Nenner schreiben:

f(4) - f(2) 4 - 2

= -3 - 3 4 - 2

= -6 2

= -3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 +2x +4 . Bestimme den Differenzenquotient von f im Intervall I=[1;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 1 und x2 = 4 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(1) = - 1 2 +21 +4 = -1 +2 +4 = 5 und
f(4) = - 4 2 +24 +4 = -16 +8 +4 = -4
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(1) in den Zähler und die Differenz der x-Werte 4 - 1 in den Nenner schreiben:

f(4) - f(1) 4 - 1

= -4 - 5 4 - 1

= -9 3

= -3

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=-1 und x2=0,5 hat bei einer Funktion f den Wert 2.Es gilt: f(-1) = -2. Bestimme f(0,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(0,5) - f(-1) 0,5 - ( - 1 ) = 2

f(0,5) = -2 eingestezt (und Nenner verrechnet):

f(0,5) - ( - 2 ) 1,5 = 2 |⋅ 1,5

f(0,5) +2 = 3 |-2

f(0,5) = 1

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -5 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= x 2 -5 - ( 2 2 -5 ) x -2

= x 2 -5 - 2 2 +5 x -2

= x 2 - 2 2 x -2

= x 2 - 2 2 x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= 1 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 x +2 = 2 +2 = 4

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= ( 2 + h ) 2 -5 - ( 2 2 -5 ) h

= ( 2 + h ) 2 -5 - 2 2 +5 h

= ( h +2 ) 2 -4 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= h 2 +4h +4 -4 h

= h 2 +4h h

= h ( h +4 ) h

Jetzt können wir mit h kürzen:

= h +4

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 h +4 = 0 +4 = 4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 . Bestimme f'(-1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 ) = 3 x 2 - 3 ( -1 ) 2 x +1 = 3 x 2 -3 x +1 = -3 + 3 x 2 x +1

Jetzt setzen wir Werte für x ein, die sich immer mehr der -1 annähern:

x = -0.9: -3 + 3 ( -0,9 ) 2 0,1 ≈ 7.03704

x = -0.99: -3 + 3 ( -0,99 ) 2 0,01 ≈ 6.09122

x = -0.999: -3 + 3 ( -0,999 ) 2 0,001 ≈ 6.00901

x = -0.9999: -3 + 3 ( -0,9999 ) 2 0,0001 ≈ 6.0009

x = -0.99999: -3 + 3 ( -1 ) 2 0.00001 ≈ 6.00009

Wir können nun also eine Vermutung für den Grenzwert für x → -1 bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -3 + 3 x 2 x +1 6

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= x 2 -1 - ( u 2 -1 ) x - u

= x 2 -1 - u 2 +1 x - u

= x 2 - u 2 x - u

= x 2 - u 2 x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 1 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u x + u = 1 · ( u + u ) = 2u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 2u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 2x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x -5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 3 x -5 - ( 3 u -5 ) x - u

= 3 x -5 -3 u +5 x - u

= 3 x -3 u x - u

= 3( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= 3( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= 3 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 3 x + u = 3 u + u = 3 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 3 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 3 2 x .