Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[0;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 0 und x2 = 2 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(0) in den Zähler und die Differenz der x-Werte 2 - 0 in den Nenner schreiben:

f(2) - f(0) 2 - 0

= -2 - 2 2 - 0

= -4 2

= -2

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 3 -3 x 2 +1 . Bestimme den Differenzenquotient von f im Intervall I=[-3;-1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -3 und x2 = -1 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-3) = - ( -3 ) 3 -3 ( -3 ) 2 +1 = -( -27 ) -39 +1 = 1 und
f(-1) = - ( -1 ) 3 -3 ( -1 ) 2 +1 = -( -1 ) -31 +1 = -1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-1) - f(-3) in den Zähler und die Differenz der x-Werte -1 - ( - 3 ) in den Nenner schreiben:

f(-1) - f(-3) -1 - ( - 3 )

= -1 - 1 -1 - ( - 3 )

= -2 2

= -1

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 15 Minuten seiner Fahrt 35 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 15 min eben 15 60 h = 1 4 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 4 ) - f(0) 1 4 - 0 = 35

f( 1 4 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 4 ) - 0 1 4 = 35 |⋅ 1 4

f( 1 4 ) -0 = 35 4 |+0

f( 1 4 ) = 8.75

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 +3 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= - x 2 +3 - ( - ( -1 ) 2 +3 ) x +1

= - x 2 +3 + ( -1 ) 2 -3 x +1

= - x 2 + ( -1 ) 2 x +1

= -( x 2 - ( -1 ) 2 ) x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= -1 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -( x -1 ) = -( -1 -1 ) = 2

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= - ( -1 + h ) 2 +3 - ( - ( -1 ) 2 +3 ) h

= - ( -1 + h ) 2 +3 + ( -1 ) 2 -3 h

= - ( h -1 ) 2 +1 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -( h 2 -2h +1 ) +1 h

= - h 2 +2h -1 +1 h

= - h 2 +2h h

= h ( -h +2 ) h

Jetzt können wir mit h kürzen:

= -h +2

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 -h +2 = -0 +2 = 2

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x . Bestimme f'(25) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 25 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 25 und einem allgemeinen x auf:

f(x) - f(25) x - 25 = - x + 25 x -25 = - x +5 x -25

Jetzt setzen wir Werte für x ein, die sich immer mehr der 25 annähern:

x = 25.1: - 25,1 +5 0,1 ≈ -0.0999

x = 25.01: - 25,01 +5 0,01 ≈ -0.09999

x = 25.001: - 25,001 +5 0,001 ≈ -0.1

x = 25.0001: - 25,0001 +5 0,0001 ≈ -0.1

x = 25.00001: - 25 +5 0.00001 ≈ -0.1

Wir können nun also eine Vermutung für den Grenzwert für x → 25 bestimmen:

f'(25) = lim x → 25 f(x) - f(25) x - 25 = lim x → 25 - x +5 x -25 -0.1

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -4 x 2 +1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -4 x 2 +1 - ( -4 u 2 +1 ) x - u

= -4 x 2 +1 +4 u 2 -1 x - u

= -4 x 2 +4 u 2 x - u

= -4( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -4 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -4 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -4( x + u) = -4 · ( u + u ) = -8u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -8u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -8x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 5 x 2 -2x . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 5 x 2 -2x - ( 5 u 2 -2u) x - u

= 5 x 2 -2x -5 u 2 +2u x - u

= 5 x 2 -5 u 2 -2x +2u x - u

= 5( x 2 - u 2 )-2( x - u ) x - u

= 5( x 2 - u 2 ) x - u + -2( x - u ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 5 ( x - u ) · ( x + u ) x - u + -2( x - u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 5 · ( x + u ) -2

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 5 · ( x + u ) -2 = 5 · ( u + u ) -2 = 10u -2

Da die Ableitung an jeder Stelle x=u immer f'(u) = 10u -2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 10x -2 .