Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-3;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -3 und x2 = 0 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-3) in den Zähler und die Differenz der x-Werte 0 - ( - 3 ) in den Nenner schreiben:

f(0) - f(-3) 0 - ( - 3 )

= 2 - ( - 1 ) 0 - ( - 3 )

= 3 3

= 1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x +3 . Bestimme den Differenzenquotient von f im Intervall I=[-3;-2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -3 und x2 = -2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-3) = -3 +3 = 0 = 0 und
f(-2) = -2 +3 = 1 = 1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-2) - f(-3) in den Zähler und die Differenz der x-Werte -2 - ( - 3 ) in den Nenner schreiben:

f(-2) - f(-3) -2 - ( - 3 )

= 1 - 0 -2 - ( - 3 )

= 1 1

= 1

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 20 Minuten seiner Fahrt 25 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 20 min eben 20 60 h = 1 3 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 3 ) - f(0) 1 3 - 0 = 25

f( 1 3 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 3 ) - 0 1 3 = 25 |⋅ 1 3

f( 1 3 ) -0 = 25 3 |+0

f( 1 3 ) ≈ 8.333

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 +2 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= - x 2 +2 - ( - ( -1 ) 2 +2 ) x +1

= - x 2 +2 + ( -1 ) 2 -2 x +1

= - x 2 + ( -1 ) 2 x +1

= -( x 2 - ( -1 ) 2 ) x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= -1 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -( x -1 ) = -( -1 -1 ) = 2

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= - ( -1 + h ) 2 +2 - ( - ( -1 ) 2 +2 ) h

= - ( -1 + h ) 2 +2 + ( -1 ) 2 -2 h

= - ( h -1 ) 2 +1 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -( h 2 -2h +1 ) +1 h

= - h 2 +2h -1 +1 h

= - h 2 +2h h

= h ( -h +2 ) h

Jetzt können wir mit h kürzen:

= -h +2

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 -h +2 = -0 +2 = 2

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 4 +4x . Bestimme f'(-2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 ) = -2 x 4 +4x - ( -2 ( -2 ) 4 +4( -2 ) ) x +2 = -2 x 4 +4x +32 +8 x +2 = -2 x 4 +4x +40 x +2

Jetzt setzen wir Werte für x ein, die sich immer mehr der -2 annähern:

x = -1.9: -2 ( -1,9 ) 4 +4( -1,9 ) +40 0,1 ≈ 63.358

x = -1.99: -2 ( -1,99 ) 4 +4( -1,99 ) +40 0,01 ≈ 67.5216

x = -1.999: -2 ( -1,999 ) 4 +4( -1,999 ) +40 0,001 ≈ 67.95202

x = -1.9999: -2 ( -1,9999 ) 4 +4( -1,9999 ) +40 0,0001 ≈ 67.9952

x = -1.99999: -2 ( -2 ) 4 +4( -2 ) +40 0.00001 ≈ 67.99952

Wir können nun also eine Vermutung für den Grenzwert für x → -2 bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 -2 x 4 +4x +40 x +2 68

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x 2 +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 4 x 2 +4 - ( 4 u 2 +4 ) x - u

= 4 x 2 +4 -4 u 2 -4 x - u

= 4 x 2 -4 u 2 x - u

= 4( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 4 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 4 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 4( x + u) = 4 · ( u + u ) = 8u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 8u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 8x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 +3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - x 2 +3 - ( - u 2 +3 ) x - u

= - x 2 +3 + u 2 -3 x - u

= - x 2 + u 2 x - u

= -( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -1 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -( x + u) = -1 · ( u + u ) = -2u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -2u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -2x .