Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-3;-2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -3 und x2 = -2 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-2) - f(-3) in den Zähler und die Differenz der x-Werte -2 - ( - 3 ) in den Nenner schreiben:

f(-2) - f(-3) -2 - ( - 3 )

= 0 - ( - 3 ) -2 - ( - 3 )

= 3 1

= 3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 +3x +1 . Bestimme den Differenzenquotient von f im Intervall I=[2;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 2 und x2 = 4 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(2) = - 2 2 +32 +1 = -4 +6 +1 = 3 und
f(4) = - 4 2 +34 +1 = -16 +12 +1 = -3
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(2) in den Zähler und die Differenz der x-Werte 4 - 2 in den Nenner schreiben:

f(4) - f(2) 4 - 2

= -3 - 3 4 - 2

= -6 2

= -3

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 20 Minuten seiner Fahrt 15 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 20 min eben 20 60 h = 1 3 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 3 ) - f(0) 1 3 - 0 = 15

f( 1 3 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 3 ) - 0 1 3 = 15 |⋅ 1 3

f( 1 3 ) -0 = 5 |+0

f( 1 3 ) = 5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 -2 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= -2 x 2 -2 - ( -2 ( -1 ) 2 -2 ) x +1

= -2 x 2 -2 +2 ( -1 ) 2 +2 x +1

= -2 x 2 +2 ( -1 ) 2 x +1

= -2( x 2 - ( -1 ) 2 ) x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= -2 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -2( x -1 ) = -2( -1 -1 ) = 4

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= -2 ( -1 + h ) 2 -2 - ( -2 ( -1 ) 2 -2 ) h

= -2 ( -1 + h ) 2 -2 +2 ( -1 ) 2 +2 h

= -2 ( h -1 ) 2 +2 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -2( h 2 -2h +1 ) +2 h

= -2 h 2 +4h -2 +2 h

= -2 h 2 +4h h

= 2 h ( -h +2 ) h

Jetzt können wir mit h kürzen:

= 2( -h +2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 2( -h +2 ) = 2( -0 +2 ) = 4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 3 . Bestimme f'(-2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 ) = 2 x 3 - 2 ( -2 ) 3 x +2 = 2 x 3 + 1 4 x +2 = 1 4 + 2 x 3 x +2

Jetzt setzen wir Werte für x ein, die sich immer mehr der -2 annähern:

x = -1.9: 1 4 + 2 ( -1,9 ) 3 0,1 ≈ -0.41588

x = -1.99: 1 4 + 2 ( -1,99 ) 3 0,01 ≈ -0.37878

x = -1.999: 1 4 + 2 ( -1,999 ) 3 0,001 ≈ -0.37538

x = -1.9999: 1 4 + 2 ( -1,9999 ) 3 0,0001 ≈ -0.37504

x = -1.99999: 1 4 + 2 ( -2 ) 3 0.00001 ≈ -0.375

Wir können nun also eine Vermutung für den Grenzwert für x → -2 bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 1 4 + 2 x 3 x +2 -0.375

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 5 x 2 +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 5 x 2 +4 - ( 5 u 2 +4 ) x - u

= 5 x 2 +4 -5 u 2 -4 x - u

= 5 x 2 -5 u 2 x - u

= 5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 5( x + u) = 5 · ( u + u ) = 10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x +3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 3 x +3 - ( 3 u +3 ) x - u

= 3 x +3 - 3 u -3 x - u

= 3 x - 3 u x - u

= 3u x · u + -3x x · u x - u

= 3u -3x x · u x - u

= -3x +3u u · x x - u 1

Beim Doppelbruch multipliziert man den Zähler (bei dem man noch -3 ausklammern kann) mit dem Kehrbruich des Nenners:

= -3( x - u) x · u · 1 x - u

Jetzt lässt sich der Nenner x - u diagonal rauskürzen:

= - 3 x u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u - 3 x u = -3 u · u = - 3 u 2

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 3 u 2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 3 x 2 .