Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[1;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 1 und x2 = 4 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(1) in den Zähler und die Differenz der x-Werte 4 - 1 in den Nenner schreiben:

f(4) - f(1) 4 - 1

= 4 - ( - 5 ) 4 - 1

= 9 3

= 3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 3 - x 2 +1 . Bestimme den Differenzenquotient von f im Intervall I=[-1;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -1 und x2 = 1 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-1) = - ( -1 ) 3 - ( -1 ) 2 +1 = -( -1 ) - 1 +1 = 1 und
f(1) = - 1 3 - 1 2 +1 = -1 - 1 +1 = -1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(-1) in den Zähler und die Differenz der x-Werte 1 - ( - 1 ) in den Nenner schreiben:

f(1) - f(-1) 1 - ( - 1 )

= -1 - 1 1 - ( - 1 )

= -2 2

= -1

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=-1 und x2=0,5 hat bei einer Funktion f den Wert 5.Es gilt: f(-1) = 4. Bestimme f(0,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(0,5) - f(-1) 0,5 - ( - 1 ) = 5

f(0,5) = 4 eingestezt (und Nenner verrechnet):

f(0,5) - 4 1,5 = 5 |⋅ 1,5

f(0,5) -4 = 7,5 |+4

f(0,5) = 11.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 +4 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= x 2 +4 - ( ( -1 ) 2 +4 ) x +1

= x 2 +4 - ( -1 ) 2 -4 x +1

= x 2 - ( -1 ) 2 x +1

= x 2 - ( -1 ) 2 x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= 1 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 x -1 = -1 -1 = -2

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= ( -1 + h ) 2 +4 - ( ( -1 ) 2 +4 ) h

= ( -1 + h ) 2 +4 - ( -1 ) 2 -4 h

= ( h -1 ) 2 -1 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= h 2 -2h +1 -1 h

= h 2 -2h h

= h ( h -2 ) h

Jetzt können wir mit h kürzen:

= h -2

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 h -2 = 0 -2 = -2

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - 2 x 2 . Bestimme f'(1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1 = - 2 x 2 + 2 1 2 x -1 = - 2 x 2 +2 x -1 = 2 - 2 x 2 x -1

Jetzt setzen wir Werte für x ein, die sich immer mehr der 1 annähern:

x = 1.1: 2 - 2 1,1 2 0,1 ≈ 3.47107

x = 1.01: 2 - 2 1,01 2 0,01 ≈ 3.94079

x = 1.001: 2 - 2 1,001 2 0,001 ≈ 3.99401

x = 1.0001: 2 - 2 1,0001 2 0,0001 ≈ 3.9994

x = 1.00001: 2 - 2 1 2 0.00001 ≈ 3.99994

Wir können nun also eine Vermutung für den Grenzwert für x → 1 bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 2 - 2 x 2 x -1 4

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -2 x 2 +4 - ( -2 u 2 +4 ) x - u

= -2 x 2 +4 +2 u 2 -4 x - u

= -2 x 2 +2 u 2 x - u

= -2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -2( x + u) = -2 · ( u + u ) = -4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x -3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - x -3 - ( - u -3 ) x - u

= - x -3 + u +3 x - u

= - x + u x - u

= -( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= -( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= -1 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -1 x + u = -1 u + u = - 1 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 1 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 1 2 x .