Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[1;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 1 und x2 = 4 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(1) in den Zähler und die Differenz der x-Werte 4 - 1 in den Nenner schreiben:

f(4) - f(1) 4 - 1

= -3 - 3 4 - 1

= -6 3

= -2

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 -2x +2 . Bestimme den Differenzenquotient von f im Intervall I=[-2;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -2 und x2 = 1 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-2) = - ( -2 ) 2 -2( -2 ) +2 = -4 +4 +2 = 2 und
f(1) = - 1 2 -21 +2 = -1 -2 +2 = -1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(-2) in den Zähler und die Differenz der x-Werte 1 - ( - 2 ) in den Nenner schreiben:

f(1) - f(-2) 1 - ( - 2 )

= -1 - 2 1 - ( - 2 )

= -3 3

= -1

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 15 Minuten seiner Fahrt 35 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 15 min eben 15 60 h = 1 4 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 4 ) - f(0) 1 4 - 0 = 35

f( 1 4 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 4 ) - 0 1 4 = 35 |⋅ 1 4

f( 1 4 ) -0 = 35 4 |+0

f( 1 4 ) = 8.75

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 -4 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= - x 2 -4 - ( - ( -1 ) 2 -4 ) x +1

= - x 2 -4 + ( -1 ) 2 +4 x +1

= - x 2 + ( -1 ) 2 x +1

= -( x 2 - ( -1 ) 2 ) x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= -1 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -( x -1 ) = -( -1 -1 ) = 2

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= - ( -1 + h ) 2 -4 - ( - ( -1 ) 2 -4 ) h

= - ( -1 + h ) 2 -4 + ( -1 ) 2 +4 h

= - ( h -1 ) 2 +1 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -( h 2 -2h +1 ) +1 h

= - h 2 +2h -1 +1 h

= - h 2 +2h h

= h ( -h +2 ) h

Jetzt können wir mit h kürzen:

= -h +2

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 -h +2 = -0 +2 = 2

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - 4 x . Bestimme f'(1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1 = - 4 x + 4 1 x -1 = - 4 x +4 x -1 = 4 - 4 x x -1

Jetzt setzen wir Werte für x ein, die sich immer mehr der 1 annähern:

x = 1.1: 4 - 4 1,1 0,1 ≈ 3.63636

x = 1.01: 4 - 4 1,01 0,01 ≈ 3.9604

x = 1.001: 4 - 4 1,001 0,001 ≈ 3.996

x = 1.0001: 4 - 4 1,0001 0,0001 ≈ 3.9996

x = 1.00001: 4 - 4 1 0.00001 ≈ 3.99996

Wir können nun also eine Vermutung für den Grenzwert für x → 1 bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 4 - 4 x x -1 4

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 -5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -2 x 2 -5 - ( -2 u 2 -5 ) x - u

= -2 x 2 -5 +2 u 2 +5 x - u

= -2 x 2 +2 u 2 x - u

= -2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -2( x + u) = -2 · ( u + u ) = -4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - 3 x -1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - 3 x -1 - ( - 3 u -1 ) x - u

= - 3 x -1 + 3 u +1 x - u

= - 3 x + 3 u x - u

= -3u x · u + 3x x · u x - u

= -3u +3x x · u x - u

= 3x -3u u · x x - u 1

Beim Doppelbruch multipliziert man den Zähler (bei dem man noch 3 ausklammern kann) mit dem Kehrbruich des Nenners:

= 3( x - u) x · u · 1 x - u

Jetzt lässt sich der Nenner x - u diagonal rauskürzen:

= 3 x u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 3 x u = 3 u · u = 3 u 2

Da die Ableitung an jeder Stelle x=u immer f'(u) = 3 u 2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 3 x 2 .