Aufgabenbeispiele von ohne Text-Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit vari. n (höchst.) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,85.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, höchstens 30 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
32 | 0.9634 |
33 | 0.891 |
34 | 0.7715 |
35 | 0.6193 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.85 und variablem n.
Es muss gelten: ≥ 0.9
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 85% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 35 Versuchen auch ungefähr 30 (≈0.85⋅35) Treffer auftreten.
Wir berechnen also mit unserem ersten n=35:
≈ 0.6193
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=32 die gesuchte Wahrscheinlichkeit über 90% ist.
Binomialvert. mit vari. n (höchst.) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,8.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 50% Wahrscheinlichkeit, höchstens 23 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
29 | 0.5366 |
30 | 0.393 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.8 und variablem n.
Es muss gelten: ≥ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 80% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 29 Versuchen auch ungefähr 23 (≈0.8⋅29) Treffer auftreten.
Wir berechnen also mit unserem ersten n=29:
≈ 0.5366
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=29 die gesuchte Wahrscheinlichkeit über 50% ist.
Binomialvert. mit vari. n (mind) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,5.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 70% Wahrscheinlichkeit, mindestens 31 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
62 | 0.4495 |
63 | 0.4007 |
64 | 0.354 |
65 | 0.3101 |
66 | 0.2693 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.5 und variablem n.
Es muss gelten: ≥ 0.7
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.7 |+ - 0.7
0.3 ≥ oder ≤ 0.3
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 50% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 62 Versuchen auch ungefähr 31 (≈0.5⋅62) Treffer auftreten.
Wir berechnen also mit unserem ersten n=62:
≈ 0.4495
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=66 die gesuchte Wahrscheinlichkeit unter 0.3 ist.
n muss also mindestens 66 sein, damit ≤ 0.3 oder eben ≥ 0.7 gilt.