Aufgabenbeispiele von ohne Text-Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit vari. n (mind) (ohne Anwend.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,9.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, mindestens 35 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
390.3504
400.2063
410.1102
420.0539
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.9 und variablem n.

Es muss gelten: P0.9n (X35) ≥ 0.9

Weil man ja aber P0.9n (X35) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.9n (X35) = 1 - P0.9n (X34) ≥ 0.9 |+ P0.9n (X34) - 0.9

0.1 ≥ P0.9n (X34) oder P0.9n (X34) ≤ 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 90% der Versuche mit einem Treffer. Also müssten dann doch bei 35 0.9 ≈ 39 Versuchen auch ungefähr 35 (≈0.9⋅39) Treffer auftreten.

Wir berechnen also mit unserem ersten n=39:
P0.9n (X34) ≈ 0.3504 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=42 die gesuchte Wahrscheinlichkeit unter 0.1 ist.

n muss also mindestens 42 sein, damit P0.9n (X34) ≤ 0.1 oder eben P0.9n (X35) ≥ 0.9 gilt.

Binomialvert. mit vari. n (höchst.) (ohne Anwend.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,5.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, höchstens 23 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
390.9002
400.8659
410.8256
420.7796
430.7288
440.6742
450.617
460.5585
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.5 und variablem n.

Es muss gelten: P0.5n (X23) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 50% der Versuche mit einem Treffer. Also müssten dann doch bei 23 0.5 ≈ 46 Versuchen auch ungefähr 23 (≈0.5⋅46) Treffer auftreten.

Wir berechnen also mit unserem ersten n=46:
P0.5n (X23) ≈ 0.5585 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=39 die gesuchte Wahrscheinlichkeit über 90% ist.

Binomialvert. mit vari. n (mind) (ohne Anwend.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,8.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 50% Wahrscheinlichkeit, mindestens 22 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
260.6167
270.4613
280.3216
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.8 und variablem n.

Es muss gelten: P0.8n (X22) ≥ 0.5

Weil man ja aber P0.8n (X22) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.8n (X22) = 1 - P0.8n (X21) ≥ 0.5 |+ P0.8n (X21) - 0.5

0.5 ≥ P0.8n (X21) oder P0.8n (X21) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 80% der Versuche mit einem Treffer. Also müssten dann doch bei 22 0.8 ≈ 28 Versuchen auch ungefähr 22 (≈0.8⋅28) Treffer auftreten.

Wir berechnen also mit unserem ersten n=28:
P0.8n (X21) ≈ 0.3216 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=27 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 27 sein, damit P0.8n (X21) ≤ 0.5 oder eben P0.8n (X22) ≥ 0.5 gilt.