Aufgabenbeispiele von ohne Text-Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit vari. n (höchst.) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,8.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 60% Wahrscheinlichkeit, höchstens 36 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
44 | 0.6771 |
45 | 0.5593 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.8 und variablem n.
Es muss gelten: ≥ 0.6
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 80% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 45 Versuchen auch ungefähr 36 (≈0.8⋅45) Treffer auftreten.
Wir berechnen also mit unserem ersten n=45:
≈ 0.5593
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=44 die gesuchte Wahrscheinlichkeit über 60% ist.
Binomialvert. mit vari. n (höchst.) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,7.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 50% Wahrscheinlichkeit, höchstens 38 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
54 | 0.5747 |
55 | 0.4921 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.7 und variablem n.
Es muss gelten: ≥ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 70% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 54 Versuchen auch ungefähr 38 (≈0.7⋅54) Treffer auftreten.
Wir berechnen also mit unserem ersten n=54:
≈ 0.5747
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=54 die gesuchte Wahrscheinlichkeit über 50% ist.
Binomialvert. mit vari. n (mind) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,75.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 70% Wahrscheinlichkeit, mindestens 20 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
27 | 0.3573 |
28 | 0.2499 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.75 und variablem n.
Es muss gelten: ≥ 0.7
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.7 |+ - 0.7
0.3 ≥ oder ≤ 0.3
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 75% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 27 Versuchen auch ungefähr 20 (≈0.75⋅27) Treffer auftreten.
Wir berechnen also mit unserem ersten n=27:
≈ 0.3573
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=28 die gesuchte Wahrscheinlichkeit unter 0.3 ist.
n muss also mindestens 28 sein, damit ≤ 0.3 oder eben ≥ 0.7 gilt.