Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 85% wirft 60 mal auf den Korb. Gesucht ist die Wahrscheinlichkeit dass er dabei genau 32 mal trifft.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 32) = ( a b ) dc 0.85e

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 60 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 32 mal getroffen und 28 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=60 und b=32 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 60 32 ) Pfade an. Da ja in jedem Pfad 32 Treffer und 28 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.85320.1528 oder eben (einfach vertauscht) 0.15280.8532

Somit muss d = 0.15, sowie c = 28 und e = 32 sein.

Bernoulli-Formel vervollständigen

Beispiel:

Ein Basketballspieler mit einer Trefferquote von p=0,6 wirft 5 mal auf den Korb.

Für welches der aufgeführten Ereignisse könnte der Term P = ( 5 a ) 0.64 bc die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Man kann relativ gut erkennen, dass es sich hier um die Formel von Bernoulli handeln muss, das heißt also die Wahrscheinlichkeit für genau k Treffer gegeben ist.

In der Basis der ersten Potenz kann man die gegebene Wahrscheinlichkeit für "Es trifft er in den Korb" erkennen, also muss die Hochzahl 4 die Anzahl der Treffer sein und die gesuchte Option ist: Genau 4 mal trifft er in den Korb oder eben gleich bedeutend: Genau 1 mal trifft er nicht in den Korb.

Weil ja in der Basis der ersten Potenz die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.4.

Die Hochzahl der ersten Potenz gibt die Anzahl der "Treffer" an, somit kann man bei 5 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.

Die Anzahl der richtigen Pfade (mit 4 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 5 4 ) , also ist a = 4 (hier ist auch a=1 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Eine faire Münze wird 30 mal geworfen. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses: Von den ersten 19 Versuchen landen höchstens 10 Versuche mit Zahl oben und von den restlichen Versuchen erscheint genau 6 mal "Zahl".

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 19 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. X ist binomialverteilt mit n=19 und p=0.5.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.519 (X10) ≈ 0.6762.

Analog betrachten wir nun die restlichen 11 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. Y ist binomialverteilt mit n=11 und p=0.5.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.511 (Y=6) ≈ 0.2256.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.519 (X10) P0.511 (Y=6) = 0.6762 ⋅ 0.2256 ≈ 0.1526

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 93% und im Stehen 82%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=4) = ( 5 4 ) 0.934 0.071 ≈ 0.2618
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.82.

P0.825 (X=5) = ( 5 5 ) 0.825 0.180 ≈ 0.3707
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2618 ⋅ 0.3707 = 0.09704926

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=5) = ( 5 5 ) 0.935 0.070 ≈ 0.6957
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.82.

P0.825 (X=4) = ( 5 4 ) 0.824 0.181 ≈ 0.4069
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.6957 ⋅ 0.4069 = 0.28308033

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=5) = ( 5 5 ) 0.935 0.070 ≈ 0.6957
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.82.

P0.825 (X=5) = ( 5 5 ) 0.825 0.180 ≈ 0.3707
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.6957 ⋅ 0.3707 = 0.25789599


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.097 + 0.2831 + 0.2579 = 0.638

feste Reihenfolge im Binomialkontext

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 70% wirft 10 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 10 Versuchen irgendwann einmal eine Serie mit 3 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 10 Versuchen mit der Formel von Bernoulli berechnen: ( 10 3 ) 0.7 3 0.3 7

Dabei gibt ja 0.7 3 0.3 7 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 7 Nicht-Treffern und ( 10 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 10 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOOOOOOO

OXXXOOOOOO

OOXXXOOOOO

OOOXXXOOOO

OOOOXXXOOO

OOOOOXXXOO

OOOOOOXXXO

OOOOOOOXXX

Es gibt also genau 8 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 8 ⋅ 0.7 3 0.3 7 ≈ 0.0006

Kombination Binom.-Baumdiagramm

Beispiel:

Ein 10-Klässler bekommt im Schulsport eine 1 als Teilnote, wenn er beim Basketball von 20 Korblegerversuchen mindestens 18 trifft. Weil der Sportlehrer ein nettes Weichei ist, darf der Schüler den Test noch ein zweites mal probieren, wenn er unzufrieden ist. Wie groß ist Wahrscheinlichkeit, dass der Schüler mit seiner Trefferquote von 90% eine 1 bekommt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'genügend Treffer'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für mindestens 18 Treffer bei 20 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.9,
also P0.920 (X18) .

Dies berechnet man über die Gegenwahrscheinlichkeit: P0.920 (X18) = 1 - P0.920 (X17)

≈ 1 - 0.3231 ≈ 0.6769 (TI-Befehl: 1-binomcdf(20,0.9,17))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'genügend Treffer' (p=0.6769) und 'zu wenig'(p=0.3231).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 1 mal 'genügend Treffer' oder 2 mal 'genügend Treffer'

EreignisP
genügend Treffer -> genügend Treffer0,4582
genügend Treffer -> zu wenig0,2187
zu wenig -> genügend Treffer0,2187
zu wenig -> zu wenig0,1044

Einzel-Wahrscheinlichkeiten: genügend Treffer: 0,6769; zu wenig: 0,3231;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'genügend Treffer'-'zu wenig' (P=0,2187)
  • 'zu wenig'-'genügend Treffer' (P=0,2187)
  • 'genügend Treffer'-'genügend Treffer' (P=0,4582)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,2187 + 0,2187 + 0,4582 = 0,8956