Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 40% wirft 80 mal auf den Korb. Gesucht ist die Wahrscheinlichkeit dass er dabei genau 32 mal trifft.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 32) = ( a b ) 0.4c de

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 80 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 32 mal getroffen und 48 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=80 und b=32 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 80 32 ) Pfade an. Da ja in jedem Pfad 32 Treffer und 48 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.4320.648

Somit muss d = 0.6, sowie c = 32 und e = 48 sein.

Bernoulli-Formel vervollständigen

Beispiel:

Ein idealer Würfel wird 20 mal geworfen.

Für welches der aufgeführten Ereignisse könnte der Term P = 1 -( 1 6 )20 - ( 20 a ) ( 1 6 )19 ( b 6 )c die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine 6 gewürfelt)
Y : Anzahl der Nicht-Treffer (also es wird keine 6 gewürfelt)

Beim ersten Summand nach dem "1-", also bei ( 1 6 )20 steht ja die gegebene Wahrscheinlichkeit in der Basis und die Gesamtanzahl n=20 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 20 Treffer bzw. 0 Nicht-Treffer an, also P(X=20) bzw. P(Y=0).

Beim zweiten längeren Term erkennt man die Potenz ( 1 6 )19, bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 19 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 19 Treffer sein, also P(X=19) bzw. P(Y=1).

Diese beiden Teilwahrscheinlichkeiten werden von der 1 abgezogen, d.h. der gegebene Term gibt also die Wahrscheinlichkeit für das Gegenereignis an, also in diesem Fall, dass alle Möglichkeiten außer 20 und 19 Treffer möglich sind, also 18, 17, ..., kurz P(X≤18) bzw. P(Y≥2).

X: Treffer:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Y: keine Treffer:
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Somit ist die gesuchte Option: Höchstens 18 mal wird eine 6 gewürfelt.

Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.

Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 20 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.

Die Anzahl der richtigen Pfade (mit 19 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 20 19 ) , also ist a = 19 (hier ist auch a=1 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Ein Lehrer verteilt bei einer Klassenarbeit an alle seine 24 Schülerinnen und Schüler jeweils einen Glückskeks. Wie groß ist die Wahrscheinlichkeit, dass von den 8 Mädchen genau 1 einen Glückskeks mit einer Peperoni und von den Jungs genau 0 einen Glückskeks mit einer Peperoni erwischen .

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 8 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Kekse mit einer Peperoni drin an. X ist binomialverteilt mit n=8 und p= 1 8 .

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P 1 8 8 (X=1) ≈ 0.3927.

Analog betrachten wir nun die restlichen 16 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Kekse mit einer Peperoni drin an. Y ist binomialverteilt mit n=16 und p= 1 8 .

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P 1 8 16 (Y=0) ≈ 0.1181.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P 1 8 8 (X=1) P 1 8 16 (Y=0) = 0.3927 ⋅ 0.1181 ≈ 0.0464

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 50% und oben 20%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 2 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 2 kommen kann:

  • 0 mal unten und 2 mal oben
  • 1 mal unten und 1 mal oben
  • 2 mal unten und 0 mal oben

0 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 0 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=0) = ( 3 0 ) 0.50 0.53 ≈ 0.125
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=2) = ( 3 2 ) 0.22 0.81 ≈ 0.096
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.125 ⋅ 0.096 = 0.012

1 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=1) = ( 3 1 ) 0.51 0.52 ≈ 0.375
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=1) = ( 3 1 ) 0.21 0.82 ≈ 0.384
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.375 ⋅ 0.384 = 0.144

2 mal unten und 0 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=2) = ( 3 2 ) 0.52 0.51 ≈ 0.375
Die Wahrscheinlichkeit für 0 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=0) = ( 3 0 ) 0.20 0.83 ≈ 0.512
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.375 ⋅ 0.512 = 0.192


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.012 + 0.144 + 0.192 = 0.348

feste Reihenfolge im Binomialkontext

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 10 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 4 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 10 Versuchen mit der Formel von Bernoulli berechnen: ( 10 4 ) 0.7 4 0.3 6

Dabei gibt ja 0.7 4 0.3 6 die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 6 Nicht-Treffern und ( 10 4 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 10 4 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXOOOOOO

OXXXXOOOOO

OOXXXXOOOO

OOOXXXXOOO

OOOOXXXXOO

OOOOOXXXXO

OOOOOOXXXX

Es gibt also genau 7 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 7 ⋅ 0.7 4 0.3 6 ≈ 0.0012

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 18% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 105 Tickets für ihr Flugzeug mit 96 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=105 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 96 Treffer bei 105 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.82, also P0.82105 (X96)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=105 und p=0.82.

P0.82105 (X96) = P0.82105 (X=0) + P0.82105 (X=1) + P0.82105 (X=2) +... + P0.82105 (X=96) = 0.99794375707892 ≈ 0.9979
(TI-Befehl: binomcdf(105,0.82,96))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9979) und 'überbucht'(p=0.0021).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0,9937
nicht überbucht -> nicht überbucht -> überbucht0,0021
nicht überbucht -> überbucht -> nicht überbucht0,0021
nicht überbucht -> überbucht -> überbucht0
überbucht -> nicht überbucht -> nicht überbucht0,0021
überbucht -> nicht überbucht -> überbucht0
überbucht -> überbucht -> nicht überbucht0
überbucht -> überbucht -> überbucht0

Einzel-Wahrscheinlichkeiten: nicht überbucht: 0,9979; überbucht: 0,0021;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,9937)
  • 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0,0021)
  • 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0,0021)
  • 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,0021)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,9937 + 0,0021 + 0,0021 + 0,0021 = 1