Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 75% wirft 20 mal auf den Korb. Gesucht ist die Wahrscheinlichkeit dass er dabei genau 17 mal trifft.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 17) = ( a b ) dc 0.75e

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 20 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 17 mal getroffen und 3 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=20 und b=17 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 20 17 ) Pfade an. Da ja in jedem Pfad 17 Treffer und 3 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.75170.253 oder eben (einfach vertauscht) 0.2530.7517

Somit muss d = 0.25, sowie c = 3 und e = 17 sein.

Bernoulli-Formel vervollständigen

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 10 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt.

Für welches der aufgeführten Ereignisse könnte der Term P = 1 -0.710 - ( 10 a ) 0.79 bc die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine blaue Kugel gezogen)
Y : Anzahl der Nicht-Treffer (also es wird eine rote Kugel gezogen)

Beim ersten Summand nach dem "1-", also bei 0.710 steht ja die gegebene Wahrscheinlichkeit in der Basis und die Gesamtanzahl n=10 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 10 Treffer bzw. 0 Nicht-Treffer an, also P(X=10) bzw. P(Y=0).

Beim zweiten längeren Term erkennt man die Potenz 0.79, bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 9 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 9 Treffer sein, also P(X=9) bzw. P(Y=1).

Diese beiden Teilwahrscheinlichkeiten werden von der 1 abgezogen, d.h. der gegebene Term gibt also die Wahrscheinlichkeit für das Gegenereignis an, also in diesem Fall, dass alle Möglichkeiten außer 10 und 9 Treffer möglich sind, also 8, 7, ..., kurz P(X≤8) bzw. P(Y≥2).

X: Treffer:
0
1
2
3
4
5
6
7
8
9
10

Y: keine Treffer:
10
9
8
7
6
5
4
3
2
1
0

Somit ist die gesuchte Option: Weniger als 9 mal wird eine blaue Kugel gezogen.

Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.3.

Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 10 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.

Die Anzahl der richtigen Pfade (mit 9 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 10 9 ) , also ist a = 9 (hier ist auch a=1 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein normaler Würfel wird 27 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass, Von den ersten 14 Versuchen höchstens 4 mal eine Sechs gewürfelt wird und von den restlichen Versuchen mindestens 1 Sechser gewürfelt werden?

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 14 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Sechser-Würfe an. X ist binomialverteilt mit n=14 und p= 1 6 .

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P 1 6 14 (X4) ≈ 0.931.

Analog betrachten wir nun die restlichen 13 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Sechser-Würfe an. Y ist binomialverteilt mit n=13 und p= 1 6 .

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P 1 6 13 (Y1) = 1- P 1 6 13 (Y0) ≈ 0.9065.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P 1 6 14 (X4) P 1 6 13 (Y1) = 0.931 ⋅ 0.9065 ≈ 0.844

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 93% und im Stehen 85%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=4) = ( 5 4 ) 0.934 0.071 ≈ 0.2618
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.85.

P0.855 (X=5) = ( 5 5 ) 0.855 0.150 ≈ 0.4437
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2618 ⋅ 0.4437 = 0.11616066

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=5) = ( 5 5 ) 0.935 0.070 ≈ 0.6957
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.85.

P0.855 (X=4) = ( 5 4 ) 0.854 0.151 ≈ 0.3915
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.6957 ⋅ 0.3915 = 0.27236655

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=5) = ( 5 5 ) 0.935 0.070 ≈ 0.6957
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.85.

P0.855 (X=5) = ( 5 5 ) 0.855 0.150 ≈ 0.4437
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.6957 ⋅ 0.4437 = 0.30868209


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.1162 + 0.2724 + 0.3087 = 0.6972

feste Reihenfolge im Binomialkontext

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 5% wirft 7 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 7 Versuchen irgendwann einmal eine Serie mit 3 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 7 Versuchen mit der Formel von Bernoulli berechnen: ( 7 3 ) 0.05 3 0.95 4

Dabei gibt ja 0.05 3 0.95 4 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 4 Nicht-Treffern und ( 7 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 7 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOOOO

OXXXOOO

OOXXXOO

OOOXXXO

OOOOXXX

Es gibt also genau 5 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 5 ⋅ 0.05 3 0.95 4 ≈ 0.0005

Kombination Binom.-Baumdiagramm

Beispiel:

Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 5% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 50 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 2 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 2 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.05, also P0.0550 (X2)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.05.

P0.0550 (X2) = P0.0550 (X=0) + P0.0550 (X=1) + P0.0550 (X=2) = 0.54053312271951 ≈ 0.5405
(TI-Befehl: binomcdf(50,0.05,2))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.5405) und 'nicht ok'(p=0.4595).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'nicht ok'

EreignisP
kiste ok -> kiste ok0,2921
kiste ok -> nicht ok0,2484
nicht ok -> kiste ok0,2484
nicht ok -> nicht ok0,2111

Einzel-Wahrscheinlichkeiten: kiste ok: 0,5405; nicht ok: 0,4595;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'kiste ok'-'kiste ok' (P=0,2921)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,2921 = 0,2921