Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 100 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Gesucht ist die Wahrscheinlichkeit dass genau 15 blaue Kugeln gezogen werden.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 15) = ( a b ) 0.7c de

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 100 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 15 mal getroffen und 85 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=100 und b=15 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 100 15 ) Pfade an. Da ja in jedem Pfad 15 Treffer und 85 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.7150.385

Somit muss d = 0.3, sowie c = 15 und e = 85 sein.

Bernoulli-Formel vervollständigen

Beispiel:

Ein idealer Würfel wird 20 mal geworfen.

Für welches der aufgeführten Ereignisse könnte der Term P = 1 - ( 5 6 )20 - ( 20 a ) ( 1 6 )1 ( b 6 )c die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine 6 gewürfelt)
Y : Anzahl der Nicht-Treffer (also es wird keine 6 gewürfelt)

Beim Summand ( 5 6 )20 steht ja die Gegenwahrscheinlichkeit in der Basis und die Gesamtanzahl n=20 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 0 Treffer bzw. 20 Nicht-Treffer an, also P(X=0) bzw. P(Y=20).

Beim hinteren längeren Term erkennt man die Potenz ( 1 6 )1, bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 1 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 1 Treffer sein, also P(X=1) bzw. P(Y=19).

Diese beiden Teilwahrscheinlichkeiten werden von der 1 abgezogen, d.h. der gegebene Term gibt also die Wahrscheinlichkeit für das Gegenereignis an, also in diesem Fall, dass alle Möglichkeiten außer 0 und 1 Treffer möglich sind, also 2, 3, ..., kurz P(X≥2) bzw. P(Y≤18).

X: Treffer:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Y: keine Treffer:
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Somit ist die gesuchte Option: Mindestens 2 mal wird eine 6 gewürfelt oder eben gleich bedeutend: Weniger als 19 mal wird keine 6 gewürfelt.

Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.

Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 20 Versuchen die Anzahl der "Nicht-Treffer" mit c = 19 bestimmen.

Die Anzahl der richtigen Pfade (mit 1 Treffer und 19 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 20 1 ) , also ist a = 1 (hier ist auch a=19 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 25% und wirft 13 mal auf dem Korb. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 8 Versuchen genau 1 mal und von den restlichen Versuchen höchstens 2 mal trifft.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 8 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Treffer des BB-Spielers an. X ist binomialverteilt mit n=8 und p=0.25.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.258 (X=1) ≈ 0.267.

Analog betrachten wir nun die restlichen 5 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Treffer des BB-Spielers an. Y ist binomialverteilt mit n=5 und p=0.25.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.255 (Y2) ≈ 0.8965.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.258 (X=1) P0.255 (Y2) = 0.267 ⋅ 0.8965 ≈ 0.2394

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 40% und oben 20%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 2 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 2 kommen kann:

  • 0 mal unten und 2 mal oben
  • 1 mal unten und 1 mal oben
  • 2 mal unten und 0 mal oben

0 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 0 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=0) = ( 3 0 ) 0.40 0.63 ≈ 0.216
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=2) = ( 3 2 ) 0.22 0.81 ≈ 0.096
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.216 ⋅ 0.096 = 0.020736

1 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=1) = ( 3 1 ) 0.41 0.62 ≈ 0.432
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=1) = ( 3 1 ) 0.21 0.82 ≈ 0.384
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.432 ⋅ 0.384 = 0.165888

2 mal unten und 0 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=2) = ( 3 2 ) 0.42 0.61 ≈ 0.288
Die Wahrscheinlichkeit für 0 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=0) = ( 3 0 ) 0.20 0.83 ≈ 0.512
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.288 ⋅ 0.512 = 0.147456


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.0207 + 0.1659 + 0.1475 = 0.3341

feste Reihenfolge im Binomialkontext

Beispiel:

Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 40%. Es wird 5 mal gedreht.Bestimme die Wahrscheinlichkeit, dass dabei genau 3 mal in den grünen Bereich gedreht wird und diese Drehungen unmittelbar hintereinander erfolgen (also ohne, dass dazwischen mal nicht in den grünen Bereich gedreht wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 5 Versuchen mit der Formel von Bernoulli berechnen: ( 5 3 ) 0.4 3 0.6 2

Dabei gibt ja 0.4 3 0.6 2 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 2 Nicht-Treffern und ( 5 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 5 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOO

OXXXO

OOXXX

Es gibt also genau 3 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 3 ⋅ 0.4 3 0.6 2 ≈ 0.0691

Kombination Binom.-Baumdiagramm

Beispiel:

Ein 10-Klässler bekommt im Schulsport eine 1 als Teilnote, wenn er beim Basketball von 20 Korblegerversuchen mindestens 18 trifft. Weil der Sportlehrer ein nettes Weichei ist, darf der Schüler den Test noch ein zweites mal probieren, wenn er unzufrieden ist. Wie groß ist Wahrscheinlichkeit, dass der Schüler mit seiner Trefferquote von 81% eine 1 bekommt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'genügend Treffer'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für mindestens 18 Treffer bei 20 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.81,
also P0.8120 (X18) .

Dies berechnet man über die Gegenwahrscheinlichkeit: P0.8120 (X18) = 1 - P0.8120 (X17)

≈ 1 - 0.7614 ≈ 0.2386 (TI-Befehl: 1-binomcdf(20,0.81,17))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'genügend Treffer' (p=0.2386) und 'zu wenig'(p=0.7614).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 1 mal 'genügend Treffer' oder 2 mal 'genügend Treffer'

EreignisP
genügend Treffer -> genügend Treffer0,0569
genügend Treffer -> zu wenig0,1817
zu wenig -> genügend Treffer0,1817
zu wenig -> zu wenig0,5797

Einzel-Wahrscheinlichkeiten: genügend Treffer: 0,2386; zu wenig: 0,7614;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'genügend Treffer'-'zu wenig' (P=0,1817)
  • 'zu wenig'-'genügend Treffer' (P=0,1817)
  • 'genügend Treffer'-'genügend Treffer' (P=0,0569)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,1817 + 0,1817 + 0,0569 = 0,4203