Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Ein idealer Würfel wird 20 mal geworfen. Gesucht ist die Wahrscheinlichkeit dass genau 13 mal eine 6 geworfen wird.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 13) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 20 Ebenen lösen.
Der Binomialkoeffizient
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Somit muss d = 5, sowie c = 13 und e = 7 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 10%. Es wird 20 mal gedreht.
Für welches der aufgeführten Ereignisse könnte der Term P = 1 -
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird in den grünen Bereich gedreht)Y : Anzahl der Nicht-Treffer (also es wird nicht in den grünen Bereich gedreht)
Beim ersten Summand nach dem "1-", also bei
Beim zweiten längeren Term erkennt man die Potenz
Diese beiden Teilwahrscheinlichkeiten werden von der 1 abgezogen, d.h. der gegebene Term gibt also die Wahrscheinlichkeit für das Gegenereignis an, also in diesem Fall, dass alle Möglichkeiten außer 20 und 19 Treffer möglich sind, also 18, 17, ..., kurz P(X≤18) bzw. P(Y≥2).
Somit ist die gesuchte Option: Höchstens 18 mal wird in den grünen Bereich gedreht oder eben gleich bedeutend: Mehr als 1 mal wird nicht in den grünen Bereich gedreht.
Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.9.
Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 20 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.
Die Anzahl der richtigen Pfade (mit 19 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,21 entsteht. Es wird eine Stichprobe der Menge 90 entnommen. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 10 Stück dieser Stichprobe gleich mal genau 2 defekt sind und von den restlichen der Stickprobe höchstens 18 nicht funktionieren.
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 10
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=10 und p=0.21.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 80 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der defekten Chips an. Y ist binomialverteilt mit n=80 und p=0.21.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
zwei unabhängige Binom.
Beispiel:
Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 50% und oben 20%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 2 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 2 kommen kann:
- 0 mal unten und 2 mal oben
- 1 mal unten und 1 mal oben
- 2 mal unten und 0 mal oben
0 mal unten und 2 mal oben
Die Wahrscheinlichkeit für 0 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.
Die Wahrscheinlichkeit für 2 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.125 ⋅ 0.096 = 0.012
1 mal unten und 1 mal oben
Die Wahrscheinlichkeit für 1 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.
Die Wahrscheinlichkeit für 1 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.375 ⋅ 0.384 = 0.144
2 mal unten und 0 mal oben
Die Wahrscheinlichkeit für 2 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.
Die Wahrscheinlichkeit für 0 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.375 ⋅ 0.512 = 0.192
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:
0.012 + 0.144 + 0.192 = 0.348
feste Reihenfolge im Binomialkontext
Beispiel:
6 Würfel werden gleichzeitig geworfen und liegen dann anschließend in einer Reihe. Bestimme die Wahrscheinlichkeit, dass dabei genau 3 Sechser gewürfelt werden und die alle direkt nebeneinander liegen.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 6 Versuchen mit der Formel von Bernoulli
berechnen:
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXOOO
OXXXOO
OOXXXO
OOOXXX
Es gibt also genau 4 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 4 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 10% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 25 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 2 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für höchstens 2 Treffer bei 25 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.1, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.1.
(TI-Befehl: binomcdf(25,0.1,2))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.5371) und 'nicht ok'(p=0.4629).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'nicht ok'
Ereignis | P |
---|---|
kiste ok -> kiste ok | |
kiste ok -> nicht ok | |
nicht ok -> kiste ok | |
nicht ok -> nicht ok |
Einzel-Wahrscheinlichkeiten: kiste ok:
- 'kiste ok'-'kiste ok' (P=
)0,2885
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten: