Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Ein idealer Würfel wird 15 mal geworfen. Gesucht ist die Wahrscheinlichkeit dass genau 6 mal eine 6 geworfen wird.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 6) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 15 Ebenen lösen.
Der Binomialkoeffizient
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Somit muss d = 5, sowie c = 9 und e = 6 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Ein Basketballspieler mit einer Trefferquote von p=0,8 wirft 15 mal auf den Korb.
Für welches der aufgeführten Ereignisse könnte der Term P =
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es trifft er in den Korb)Y : Anzahl der Nicht-Treffer (also es trifft er nicht in den Korb)
Beim ersten Summand
Beim zweiten längeren Term erkennt man die Potenz
Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=0)+P(X=1)=P(X≤1) bzw. P(Y≥14)
Somit ist die gesuchte Option: Höchstens 1 mal trifft er in den Korb.
Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.2.
Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 15 Versuchen die Anzahl der "Nicht-Treffer" mit c = 14 bestimmen.
Die Anzahl der richtigen Pfade (mit 1 Treffer und 14 Nicht-Treffer) steht vorne im Binomialkoeffizient mit
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit, im grünen Bereich zu landen, bei p=0,45. Es wird 60 mal gedreht. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses:Von den ersten 15 Versuchen landen genau 5 Versuche im grünen Bereich und von den restlichen Versuchen wird mindestens 19 mal auf grün gedreht.
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 15
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der Drehungen die im grünen Bereich landen an. X ist binomialverteilt mit n=15 und p=0.45.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 45 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der Drehungen die im grünen Bereich landen an. Y ist binomialverteilt mit n=45 und p=0.45.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
zwei unabhängige Binom.
Beispiel:
Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 60% und oben 40%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 4 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 4 kommen kann:
- 1 mal unten und 3 mal oben
- 2 mal unten und 2 mal oben
- 3 mal unten und 1 mal oben
1 mal unten und 3 mal oben
Die Wahrscheinlichkeit für 1 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.
Die Wahrscheinlichkeit für 3 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.288 ⋅ 0.064 = 0.018432
2 mal unten und 2 mal oben
Die Wahrscheinlichkeit für 2 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.
Die Wahrscheinlichkeit für 2 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.432 ⋅ 0.288 = 0.124416
3 mal unten und 1 mal oben
Die Wahrscheinlichkeit für 3 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.
Die Wahrscheinlichkeit für 1 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.216 ⋅ 0.432 = 0.093312
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:
0.0184 + 0.1244 + 0.0933 = 0.2362
feste Reihenfolge im Binomialkontext
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 55% wirft 9 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 9 Versuchen irgendwann einmal eine Serie mit 5 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 9 Versuchen mit der Formel von Bernoulli
berechnen:
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXXXOOOO
OXXXXXOOO
OOXXXXXOO
OOOXXXXXO
OOOOXXXXX
Es gibt also genau 5 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 5 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Ein 10-Klässler bekommt im Schulsport eine 1 als Teilnote, wenn er beim Basketball von 20 Korblegerversuchen mindestens 18 trifft. Weil der Sportlehrer ein nettes Weichei ist, darf der Schüler den Test noch ein zweites mal probieren, wenn er unzufrieden ist. Wie groß ist Wahrscheinlichkeit, dass der Schüler mit seiner Trefferquote von 85% eine 1 bekommt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'genügend Treffer'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für mindestens 18 Treffer bei 20 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.85,
also
Dies berechnet man über die Gegenwahrscheinlichkeit:
≈ 1 - 0.5951 ≈ 0.4049 (TI-Befehl: 1-binomcdf(20,0.85,17))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'genügend Treffer' (p=0.4049) und 'zu wenig'(p=0.5951).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 1 mal 'genügend Treffer' oder 2 mal 'genügend Treffer'
| Ereignis | P |
|---|---|
| genügend Treffer -> genügend Treffer | |
| genügend Treffer -> zu wenig | |
| zu wenig -> genügend Treffer | |
| zu wenig -> zu wenig |
Einzel-Wahrscheinlichkeiten: genügend Treffer:
- 'genügend Treffer'-'zu wenig' (P=
)0,241 - 'zu wenig'-'genügend Treffer' (P=
)0,241 - 'genügend Treffer'-'genügend Treffer' (P=
)0,1639
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
