Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,35. Gesucht ist die Wahrscheinlichkeit bei 60 Versuchen genau 53 mal im grünen Bereich zu landen.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 53) = ( a b ) 0.35c de

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 60 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 53 mal getroffen und 7 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=60 und b=53 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 60 53 ) Pfade an. Da ja in jedem Pfad 53 Treffer und 7 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.35530.657

Somit muss d = 0.65, sowie c = 53 und e = 7 sein.

Bernoulli-Formel vervollständigen

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 10 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt.

Für welches der aufgeführten Ereignisse könnte der Term P = 1 - 0.310 - ( 10 a ) 0.71 bc die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine blaue Kugel gezogen)
Y : Anzahl der Nicht-Treffer (also es wird eine rote Kugel gezogen)

Beim Summand 0.310 steht ja die Gegenwahrscheinlichkeit in der Basis und die Gesamtanzahl n=10 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 0 Treffer bzw. 10 Nicht-Treffer an, also P(X=0) bzw. P(Y=10).

Beim hinteren längeren Term erkennt man die Potenz 0.71, bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 1 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 1 Treffer sein, also P(X=1) bzw. P(Y=9).

Diese beiden Teilwahrscheinlichkeiten werden von der 1 abgezogen, d.h. der gegebene Term gibt also die Wahrscheinlichkeit für das Gegenereignis an, also in diesem Fall, dass alle Möglichkeiten außer 0 und 1 Treffer möglich sind, also 2, 3, ..., kurz P(X≥2) bzw. P(Y≤8).

X: Treffer:
0
1
2
3
4
5
6
7
8
9
10

Y: keine Treffer:
10
9
8
7
6
5
4
3
2
1
0

Somit ist die gesuchte Option: Mindestens 2 mal wird eine blaue Kugel gezogen oder eben gleich bedeutend: Höchstens 8 mal wird eine rote Kugel gezogen.

Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.3.

Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 10 Versuchen die Anzahl der "Nicht-Treffer" mit c = 9 bestimmen.

Die Anzahl der richtigen Pfade (mit 1 Treffer und 9 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 10 1 ) , also ist a = 1 (hier ist auch a=9 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Eine faire Münze wird 13 mal geworfen. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses: Von den ersten 7 Versuchen landen höchstens 4 Versuche mit Zahl oben und von den restlichen Versuchen erscheint genau 4 mal "Zahl".

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 7 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. X ist binomialverteilt mit n=7 und p=0.5.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.57 (X4) ≈ 0.7734.

Analog betrachten wir nun die restlichen 6 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. Y ist binomialverteilt mit n=6 und p=0.5.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.56 (Y=4) ≈ 0.2344.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.57 (X4) P0.56 (Y=4) = 0.7734 ⋅ 0.2344 ≈ 0.1813

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 93% und im Stehen 81%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=4) = ( 5 4 ) 0.934 0.071 ≈ 0.2618
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.81.

P0.815 (X=5) = ( 5 5 ) 0.815 0.190 ≈ 0.3487
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2618 ⋅ 0.3487 = 0.09128966

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=5) = ( 5 5 ) 0.935 0.070 ≈ 0.6957
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.81.

P0.815 (X=4) = ( 5 4 ) 0.814 0.191 ≈ 0.4089
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.6957 ⋅ 0.4089 = 0.28447173

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=5) = ( 5 5 ) 0.935 0.070 ≈ 0.6957
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.81.

P0.815 (X=5) = ( 5 5 ) 0.815 0.190 ≈ 0.3487
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.6957 ⋅ 0.3487 = 0.24259059


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.0913 + 0.2845 + 0.2426 = 0.6184

feste Reihenfolge im Binomialkontext

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 45% wirft 10 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 10 Versuchen irgendwann einmal eine Serie mit 3 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 10 Versuchen mit der Formel von Bernoulli berechnen: ( 10 3 ) 0.45 3 0.55 7

Dabei gibt ja 0.45 3 0.55 7 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 7 Nicht-Treffern und ( 10 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 10 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOOOOOOO

OXXXOOOOOO

OOXXXOOOOO

OOOXXXOOOO

OOOOXXXOOO

OOOOOXXXOO

OOOOOOXXXO

OOOOOOOXXX

Es gibt also genau 8 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 8 ⋅ 0.45 3 0.55 7 ≈ 0.0111

Kombination Binom.-Baumdiagramm

Beispiel:

Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 6% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 25 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 2 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 2 Treffer bei 25 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.06, also P0.0625 (X2)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.06.

P0.0625 (X2) = P0.0625 (X=0) + P0.0625 (X=1) + P0.0625 (X=2) = 0.81289456672772 ≈ 0.8129
(TI-Befehl: binomcdf(25,0.06,2))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.8129) und 'nicht ok'(p=0.1871).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'nicht ok'

EreignisP
kiste ok -> kiste ok0,6608
kiste ok -> nicht ok0,1521
nicht ok -> kiste ok0,1521
nicht ok -> nicht ok0,035

Einzel-Wahrscheinlichkeiten: kiste ok: 0,8129; nicht ok: 0,1871;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'kiste ok'-'kiste ok' (P=0,6608)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,6608 = 0,6608