Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Ein idealer Würfel wird 20 mal geworfen. Gesucht ist die Wahrscheinlichkeit dass genau 17 mal eine 6 geworfen wird.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 17) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 20 Ebenen lösen.
Der Binomialkoeffizient
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Somit muss d = 5, sowie c = 17 und e = 3 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Ein idealer Würfel wird 10 mal geworfen.
Für welches der aufgeführten Ereignisse könnte der Term P =
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Man kann relativ gut erkennen, dass es sich hier um die Formel von Bernoulli handeln muss, das heißt also die Wahrscheinlichkeit für genau k Treffer gegeben ist.
In der Basis der ersten Potenz kann man die gegebene Wahrscheinlichkeit für "Es wird eine 6 gewürfelt" erkennen, also muss die Hochzahl 9 die Anzahl der Treffer sein und die gesuchte Option ist: Genau 9 mal wird eine 6 gewürfelt.
Weil ja in der Basis der ersten Potenz die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.
Die Hochzahl der ersten Potenz gibt die Anzahl der "Treffer" an, somit kann man bei 10 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.
Die Anzahl der richtigen Pfade (mit 9 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 40% und wirft 21 mal auf dem Korb. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 8 Versuchen genau 2 mal und von den restlichen Versuchen höchstens 4 mal trifft.
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 8
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der Treffer des BB-Spielers an. X ist binomialverteilt mit n=8 und p=0.4.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 13 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der Treffer des BB-Spielers an. Y ist binomialverteilt mit n=13 und p=0.4.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
zwei unabhängige Binom.
Beispiel:
Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 60 und am Samstag bei 50 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 30 und 38 am Samstag so zwischen 22 und 30 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 70% höher als am Freitag mit 58%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Freitag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=60 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 30 und 38 Treffer bei 60 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.58 zu erzielen, alsoDiese Wahrscheinlichkeit lässt sich als
TI-Befehl: binomcdf(60,0.58,38)- binomcdf(60,0.58,29)
Samstag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 22 und 30 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.7 zu erzielen, alsoDiese Wahrscheinlichkeit lässt sich als
TI-Befehl: binomcdf(50,0.7,30)- binomcdf(50,0.7,21)
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:
P ≈ 0.7498 ⋅ 0.0848 ≈ 0.0636
feste Reihenfolge im Binomialkontext
Beispiel:
10 Würfel werden gleichzeitig geworfen und liegen dann anschließend in einer Reihe. Bestimme die Wahrscheinlichkeit, dass dabei genau 4 Sechser gewürfelt werden und die alle direkt nebeneinander liegen.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 10 Versuchen mit der Formel von Bernoulli
berechnen:
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXXOOOOOO
OXXXXOOOOO
OOXXXXOOOO
OOOXXXXOOO
OOOOXXXXOO
OOOOOXXXXO
OOOOOOXXXX
Es gibt also genau 7 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 7 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Bei einer Fluggesellschaft treten 17% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 105 Tickets für ihr Flugzeug mit 97 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=105 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für höchstens 97 Treffer bei 105 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.83, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=105 und p=0.83.
(TI-Befehl: binomcdf(105,0.83,97))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9984) und 'überbucht'(p=0.0016).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'
Ereignis | P |
---|---|
nicht überbucht -> nicht überbucht -> nicht überbucht | |
nicht überbucht -> nicht überbucht -> überbucht | |
nicht überbucht -> überbucht -> nicht überbucht | |
nicht überbucht -> überbucht -> überbucht | |
überbucht -> nicht überbucht -> nicht überbucht | |
überbucht -> nicht überbucht -> überbucht | |
überbucht -> überbucht -> nicht überbucht | |
überbucht -> überbucht -> überbucht |
Einzel-Wahrscheinlichkeiten: nicht überbucht:
- 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=
)0,9952 - 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=
)0,0016 - 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=
)0,0016 - 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=
)0,0016
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten: