Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Ein idealer Würfel wird 15 mal geworfen. Gesucht ist die Wahrscheinlichkeit dass genau 0 mal eine 6 geworfen wird.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 0) = ( a b ) ( d 6 )c ( 1 6 )e

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 15 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 0 mal getroffen und 15 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=15 und b=0 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 15 0 ) Pfade an. Da ja in jedem Pfad 0 Treffer und 15 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
( 1 6 )0( 5 6 )15 oder eben (einfach vertauscht) ( 5 6 )15( 1 6 )0

Somit muss d = 5, sowie c = 15 und e = 0 sein.

Bernoulli-Formel vervollständigen

Beispiel:

Ein idealer Würfel wird 15 mal geworfen.

Für welches der aufgeführten Ereignisse könnte der Term P = ( 5 6 )15 + ( 15 a ) ( 1 6 )1 ( b 6 )c die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine 6 gewürfelt)
Y : Anzahl der Nicht-Treffer (also es wird keine 6 gewürfelt)

Beim ersten Summand ( 5 6 )15 steht ja die Gegenwahrscheinlichkeit in der Basis und die Gesamtanzahl n=15 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 0 Treffer bzw. 15 Nicht-Treffer an, also P(X=0) bzw. P(Y=15).

Beim zweiten längeren Term erkennt man die Potenz ( 1 6 )1, bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 1 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 1 Treffer sein, also P(X=1) bzw. P(Y=14).

X: Treffer:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Y: keine Treffer:
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=0)+P(X=1)=P(X≤1) bzw. P(Y≥14)

Somit ist die gesuchte Option: Weniger als 2 mal wird eine 6 gewürfelt.

Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.

Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 15 Versuchen die Anzahl der "Nicht-Treffer" mit c = 14 bestimmen.

Die Anzahl der richtigen Pfade (mit 1 Treffer und 14 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 15 1 ) , also ist a = 1 (hier ist auch a=14 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Eine faire Münze wird 28 mal geworfen. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses: Von den ersten 10 Versuchen landen höchstens 4 Versuche mit Zahl oben und von den restlichen Versuchen erscheint genau 10 mal "Zahl".

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 10 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. X ist binomialverteilt mit n=10 und p=0.5.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.510 (X4) ≈ 0.377.

Analog betrachten wir nun die restlichen 18 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. Y ist binomialverteilt mit n=18 und p=0.5.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.518 (Y=10) ≈ 0.1669.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.510 (X4) P0.518 (Y=10) = 0.377 ⋅ 0.1669 ≈ 0.0629

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 95% und im Stehen 82%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.95.

P0.955 (X=4) = ( 5 4 ) 0.954 0.051 ≈ 0.2036
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.82.

P0.825 (X=5) = ( 5 5 ) 0.825 0.180 ≈ 0.3707
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2036 ⋅ 0.3707 = 0.07547452

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.95.

P0.955 (X=5) = ( 5 5 ) 0.955 0.050 ≈ 0.7738
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.82.

P0.825 (X=4) = ( 5 4 ) 0.824 0.181 ≈ 0.4069
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.7738 ⋅ 0.4069 = 0.31485922

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.95.

P0.955 (X=5) = ( 5 5 ) 0.955 0.050 ≈ 0.7738
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.82.

P0.825 (X=5) = ( 5 5 ) 0.825 0.180 ≈ 0.3707
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.7738 ⋅ 0.3707 = 0.28684766


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.0755 + 0.3149 + 0.2868 = 0.6772

feste Reihenfolge im Binomialkontext

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 85% wirft 9 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 9 Versuchen irgendwann einmal eine Serie mit 3 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 9 Versuchen mit der Formel von Bernoulli berechnen: ( 9 3 ) 0.85 3 0.15 6

Dabei gibt ja 0.85 3 0.15 6 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 6 Nicht-Treffern und ( 9 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 9 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOOOOOO

OXXXOOOOO

OOXXXOOOO

OOOXXXOOO

OOOOXXXOO

OOOOOXXXO

OOOOOOXXX

Es gibt also genau 7 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 7 ⋅ 0.85 3 0.15 6 ≈ 0

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 16% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 104 Tickets für ihr Flugzeug mit 93 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=104 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 93 Treffer bei 104 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.84, also P0.84104 (X93)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=104 und p=0.84.

P0.84104 (X93) = P0.84104 (X=0) + P0.84104 (X=1) + P0.84104 (X=2) +... + P0.84104 (X=93) = 0.95611978938403 ≈ 0.9561
(TI-Befehl: binomcdf(104,0.84,93))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9561) und 'überbucht'(p=0.0439).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0,874
nicht überbucht -> nicht überbucht -> überbucht0,0401
nicht überbucht -> überbucht -> nicht überbucht0,0401
nicht überbucht -> überbucht -> überbucht0,0018
überbucht -> nicht überbucht -> nicht überbucht0,0401
überbucht -> nicht überbucht -> überbucht0,0018
überbucht -> überbucht -> nicht überbucht0,0018
überbucht -> überbucht -> überbucht0,0001

Einzel-Wahrscheinlichkeiten: nicht überbucht: 0,9561; überbucht: 0,0439;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,874)
  • 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0,0401)
  • 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0,0401)
  • 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,0401)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,874 + 0,0401 + 0,0401 + 0,0401 = 0,9944