Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 30% wirft 80 mal auf den Korb. Gesucht ist die Wahrscheinlichkeit dass er dabei genau 39 mal trifft.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 39) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 80 Ebenen lösen.
Der Binomialkoeffizient vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 39 mal getroffen und 41 mal nicht getroffen wird. Davon gibt es , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=80 und b=39 sein.
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Pfade an. Da ja in jedem Pfad 39 Treffer und
41 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
⋅
Somit muss d = 0.7, sowie c = 39 und e = 41 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Ein idealer Würfel wird 10 mal geworfen.
Für welches der aufgeführten Ereignisse könnte der Term P = die Wahrscheinlichkeit angeben?
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Man kann relativ gut erkennen, dass es sich hier um die Formel von Bernoulli handeln muss, das heißt also die Wahrscheinlichkeit für genau k Treffer gegeben ist.
In der Basis der ersten Potenz kann man die gegebene Wahrscheinlichkeit für "Es wird eine 6 gewürfelt" erkennen, also muss die Hochzahl 9 die Anzahl der Treffer sein und die gesuchte Option ist: Genau 9 mal wird eine 6 gewürfelt oder eben gleich bedeutend: Genau 1 mal wird keine 6 gewürfelt.
Weil ja in der Basis der ersten Potenz die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.
Die Hochzahl der ersten Potenz gibt die Anzahl der "Treffer" an, somit kann man bei 10 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.
Die Anzahl der richtigen Pfade (mit 9 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 70% und wirft 32 mal auf dem Korb. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 19 Versuchen genau 12 mal und von den restlichen Versuchen höchstens 10 mal trifft.
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 19
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der Treffer des BB-Spielers an. X ist binomialverteilt mit n=19 und p=0.7.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 13 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der Treffer des BB-Spielers an. Y ist binomialverteilt mit n=13 und p=0.7.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
zwei unabhängige Binom.
Beispiel:
Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 65 und am Samstag bei 35 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 24 und 36 am Samstag so zwischen 21 und 32 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 69% höher als am Freitag mit 51%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Freitag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=65 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 24 und 36 Treffer bei 65 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.51 zu erzielen, alsoDiese Wahrscheinlichkeit lässt sich als
TI-Befehl: binomcdf(65,0.51,36)- binomcdf(65,0.51,23)
Samstag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=35 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 21 und 32 Treffer bei 35 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.69 zu erzielen, alsoDiese Wahrscheinlichkeit lässt sich als
TI-Befehl: binomcdf(35,0.69,32)- binomcdf(35,0.69,20)
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:
P ≈ 0.7888 ⋅ 0.9063 ≈ 0.7149
feste Reihenfolge im Binomialkontext
Beispiel:
5 Würfel werden gleichzeitig geworfen und liegen dann anschließend in einer Reihe. Bestimme die Wahrscheinlichkeit, dass dabei genau 3 Sechser gewürfelt werden und die alle direkt nebeneinander liegen.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 5 Versuchen mit der Formel von Bernoulli
berechnen:
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXOO
OXXXO
OOXXX
Es gibt also genau 3 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 3 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 5% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 50 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 2 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für höchstens 2 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.05, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.05.
(TI-Befehl: binomcdf(50,0.05,2))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.5405) und 'nicht ok'(p=0.4595).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'nicht ok'
| Ereignis | P |
|---|---|
| kiste ok -> kiste ok | |
| kiste ok -> nicht ok | |
| nicht ok -> kiste ok | |
| nicht ok -> nicht ok |
Einzel-Wahrscheinlichkeiten: kiste ok:
- 'kiste ok'-'kiste ok' (P=
)0,2921
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
