Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 5% wirft 80 mal auf den Korb. Gesucht ist die Wahrscheinlichkeit dass er dabei genau 2 mal trifft.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 2) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 80 Ebenen lösen.
Der Binomialkoeffizient vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 2 mal getroffen und 78 mal nicht getroffen wird. Davon gibt es , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=80 und b=2 sein.
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Pfade an. Da ja in jedem Pfad 2 Treffer und
78 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
⋅
Somit muss d = 0.95, sowie c = 2 und e = 78 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 30%. Es wird 15 mal gedreht.
Für welches der aufgeführten Ereignisse könnte der Term P = die Wahrscheinlichkeit angeben?
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Man kann relativ gut erkennen, dass es sich hier um die Formel von Bernoulli handeln muss, das heißt also die Wahrscheinlichkeit für genau k Treffer gegeben ist.
In der Basis der ersten Potenz kann man die gegebene Wahrscheinlichkeit für "Es wird in den grünen Bereich gedreht" erkennen, also muss die Hochzahl 14 die Anzahl der Treffer sein und die gesuchte Option ist: Genau 14 mal wird in den grünen Bereich gedreht oder eben gleich bedeutend: Genau 1 mal wird nicht in den grünen Bereich gedreht.
Weil ja in der Basis der ersten Potenz die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.7.
Die Hochzahl der ersten Potenz gibt die Anzahl der "Treffer" an, somit kann man bei 15 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.
Die Anzahl der richtigen Pfade (mit 14 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit , also ist a = 14 (hier ist auch a=1 möglich).
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Ein Lehrer verteilt bei einer Klassenarbeit an alle seine 26 Schülerinnen und Schüler jeweils einen Glückskeks. Wie groß ist die Wahrscheinlichkeit, dass von den 17 Mädchen genau 2 einen Glückskeks mit einer Peperoni und von den Jungs genau 0 einen Glückskeks mit einer Peperoni erwischen .
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 17
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der Kekse mit einer Peperoni drin an. X ist binomialverteilt mit n=17 und p=.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.2867.
Analog betrachten wir nun die restlichen 9 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der Kekse mit einer Peperoni drin an. Y ist binomialverteilt mit n=9 und p=.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als ≈ 0.3007.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.2867 ⋅ 0.3007 ≈ 0.0862
zwei unabhängige Binom.
Beispiel:
Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 60 und am Samstag bei 40 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 30 und 38 am Samstag so zwischen 24 und 28 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 63% höher als am Freitag mit 45%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Freitag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=60 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 30 und 38 Treffer bei 60 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.45 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.9986 - 0.7424 ≈ 0.2562 berechnen.
TI-Befehl: binomcdf(60,0.45,38)- binomcdf(60,0.45,29)
Samstag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=40 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 24 und 28 Treffer bei 40 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.63 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.8608 - 0.2858 ≈ 0.575 berechnen.
TI-Befehl: binomcdf(40,0.63,28)- binomcdf(40,0.63,23)
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:
P ≈ 0.2562 ⋅ 0.575 ≈ 0.1473
feste Reihenfolge im Binomialkontext
Beispiel:
Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 75%. Es wird 6 mal gedreht.Bestimme die Wahrscheinlichkeit, dass dabei genau 4 mal in den grünen Bereich gedreht wird und diese Drehungen unmittelbar hintereinander erfolgen (also ohne, dass dazwischen mal nicht in den grünen Bereich gedreht wird).
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 6 Versuchen mit der Formel von Bernoulli berechnen: ⋅ ⋅
Dabei gibt ja ⋅ die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 2 Nicht-Treffern und die Anzahl solcher Pfade an.
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:
XXXXOO
OXXXXO
OOXXXX
Es gibt also genau 3 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit: P = 3 ⋅ ⋅ ≈ 0.0593
Kombination Binom.-Baumdiagramm
Beispiel:
Ein 10-Klässler bekommt im Schulsport eine 1 als Teilnote, wenn er beim Basketball von 20 Korblegerversuchen mindestens 18 trifft. Weil der Sportlehrer ein nettes Weichei ist, darf der Schüler den Test noch ein zweites mal probieren, wenn er unzufrieden ist. Wie groß ist Wahrscheinlichkeit, dass der Schüler mit seiner Trefferquote von 92% eine 1 bekommt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'genügend Treffer'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für mindestens 18 Treffer bei 20 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.92,
also
.
Dies berechnet man über die Gegenwahrscheinlichkeit: = 1 -
≈ 1 - 0.2121 ≈ 0.7879 (TI-Befehl: 1-binomcdf(20,0.92,17))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'genügend Treffer' (p=0.7879) und 'zu wenig'(p=0.2121).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 1 mal 'genügend Treffer' oder 2 mal 'genügend Treffer'
Ereignis | P |
---|---|
genügend Treffer -> genügend Treffer | |
genügend Treffer -> zu wenig | |
zu wenig -> genügend Treffer | |
zu wenig -> zu wenig |
Einzel-Wahrscheinlichkeiten: genügend Treffer: ; zu wenig: ;
Die relevanten Pfade sind:- 'genügend Treffer'-'zu wenig' (P=)
- 'zu wenig'-'genügend Treffer' (P=)
- 'genügend Treffer'-'genügend Treffer' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =