Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 35% wirft 40 mal auf den Korb. Gesucht ist die Wahrscheinlichkeit dass er dabei genau 2 mal trifft.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 2) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 40 Ebenen lösen.
Der Binomialkoeffizient vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 2 mal getroffen und 38 mal nicht getroffen wird. Davon gibt es , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=40 und b=2 sein.
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Pfade an. Da ja in jedem Pfad 2 Treffer und
38 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
⋅
Somit muss d = 0.65, sowie c = 2 und e = 38 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Ein idealer Würfel wird 5 mal geworfen.
Für welches der aufgeführten Ereignisse könnte der Term P = die Wahrscheinlichkeit angeben?
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Man kann relativ gut erkennen, dass es sich hier um die Formel von Bernoulli handeln muss, das heißt also die Wahrscheinlichkeit für genau k Treffer gegeben ist.
In der Basis der ersten Potenz kann man die gegebene Wahrscheinlichkeit für "Es wird eine 6 gewürfelt" erkennen, also muss die Hochzahl 1 die Anzahl der Treffer sein und die gesuchte Option ist: Genau 1 mal wird eine 6 gewürfelt.
Weil ja in der Basis der ersten Potenz die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.
Die Hochzahl der ersten Potenz gibt die Anzahl der "Treffer" an, somit kann man bei 5 Versuchen die Anzahl der "Nicht-Treffer" mit c = 4 bestimmen.
Die Anzahl der richtigen Pfade (mit 1 Treffer und 4 Nicht-Treffer) steht vorne im Binomialkoeffizient mit
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 15 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 4 Aufgaben keine einzige und von den restlichen Fragen nicht mehr als 2 richtig errät?
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 4
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenen Antworten an. X ist binomialverteilt mit n=4 und p=0.25.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 11 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der zufällig richtig geratenen Antworten an. Y ist binomialverteilt mit n=11 und p=0.25.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
zwei unabhängige Binom.
Beispiel:
Ein Biathlet hat beim Liegendschießen eine Trefferquote von 91% und im Stehen 89%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:
- 4 mal Liegendschießen und 5 mal Stehendschießen
- 5 mal Liegendschießen und 4 mal Stehendschießen
- 5 mal Liegendschießen und 5 mal Stehendschießen
4 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 4 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.91.
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.89.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.3086 ⋅ 0.5584 = 0.17232224
5 mal Liegendschießen und 4 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.91.
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.89.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.624 ⋅ 0.3451 = 0.2153424
5 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.91.
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.89.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.624 ⋅ 0.5584 = 0.3484416
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:
0.1723 + 0.2153 + 0.3484 = 0.7361
feste Reihenfolge im Binomialkontext
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 5 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 3 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 5 Versuchen mit der Formel von Bernoulli
berechnen:
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXOO
OXXXO
OOXXX
Es gibt also genau 3 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 3 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Bei einer Fluggesellschaft treten 14% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 106 Tickets für ihr Flugzeug mit 95 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=106 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für höchstens 95 Treffer bei 106 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.86, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=106 und p=0.86.
(TI-Befehl: binomcdf(106,0.86,95))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.8917) und 'überbucht'(p=0.1083).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'
| Ereignis | P |
|---|---|
| nicht überbucht -> nicht überbucht -> nicht überbucht | |
| nicht überbucht -> nicht überbucht -> überbucht | |
| nicht überbucht -> überbucht -> nicht überbucht | |
| nicht überbucht -> überbucht -> überbucht | |
| überbucht -> nicht überbucht -> nicht überbucht | |
| überbucht -> nicht überbucht -> überbucht | |
| überbucht -> überbucht -> nicht überbucht | |
| überbucht -> überbucht -> überbucht |
Einzel-Wahrscheinlichkeiten: nicht überbucht:
- 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=
)0,709 - 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=
)0,0861 - 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=
)0,0861 - 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=
)0,0861
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
