Aufgabenbeispiele von Basics
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,2 Ausschuss. Es werden nacheinander 6 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass dabei genau 5 Chips defekt sind.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips defekt sind) beträgt p = 0,2, für einen Nicht-Treffer (also hier, dass ein entnommener Chips nicht defekt ist) beträgt sie q = 1 - 0,2 = . Wenn genau 5 Treffer unter den 6 Versuchen sein sollen, bedeutet das doch, dass es genau einen Nicht-Treffer unter den 6 Versuchen geben muss. Hier gibt es nun mehrere Möglichkeiten, wann dieser Nicht-Treffer eintritt:
NichtTreffer - Treffer - Treffer - Treffer - Treffer - Treffer (also der NichtTreffer im 1-ten Versuch)
Treffer - NichtTreffer - Treffer - Treffer - Treffer - Treffer (also der NichtTreffer im 2-ten Versuch)
Treffer - Treffer - NichtTreffer - Treffer - Treffer - Treffer (also der NichtTreffer im 3-ten Versuch)
Treffer - Treffer - Treffer - NichtTreffer - Treffer - Treffer (also der NichtTreffer im 4-ten Versuch)
Treffer - Treffer - Treffer - Treffer - NichtTreffer - Treffer (also der NichtTreffer im 5-ten Versuch)
Treffer - Treffer - Treffer - Treffer - Treffer - NichtTreffer (also der NichtTreffer im 6-ten Versuch)
Bei jedem dieser 6 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = .
Für die gesuchte Wahrscheinlichkeit aller 6 Fälle gilt somit P = ≈ 0.0015 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
5! = 5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 4)
= (gekürzt mit 3)
= (gekürzt mit 2)
= 126
Binomialkoeffizient Anwendungen
Beispiel:
Eine Eisdiele bietet 8 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 3 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?
Für die erste Stelle ist jede Eissorte möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 3er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 3er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 3er-Gruppe möglich. Es gibt also 3 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 2 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 1 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 336 Möglichkeiten für nach Reihenfolge sortierte 3er-Gruppen durch die 6 Möglichkeiten, die 3er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 56 Möglichkeiten für 3er-Gruppen, die aus 8 Elementen (Eissorten) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 5! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
56 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.
Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 5 dabei ist?
Es gibt insgesamt = = = 38760 verschiedene Möglichkeiten, die 6 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 6 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 5 ist, bzw. wie viele Möglichkeiten es gibt, 6 von 20 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 5 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 19 Zahlen (alle außer der 5) zu setzen, also = = = 11628.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.3, also ca. 30%.
Formel v. Bernoulli
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 38 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Wie groß ist die Wahrscheinlichkeit dass genau 26 mal eine blaue Kugel gezogen wird?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=38 und p=0.7.
= =0.13507300938517≈ 0.1351(TI-Befehl: binompdf(38,0.7,26))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.55.
Wenn P(X ≥ k) ≥ 0.55 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.55 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.55=0.45 als Wahrscheinlichkeit übrig bleiben darf.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.01 | ≈ 0 + 0.01 = 0.01 |
| 1 | ≈ 0.05 | ≈ 0.01 + 0.05 = 0.06 |
| 2 | ≈ 0.14 | ≈ 0.06 + 0.14 = 0.2 |
| 3 | ≈ 0.23 | ≈ 0.2 + 0.23 = 0.43 |
| 4 | ≈ 0.24 | ≈ 0.43 + 0.24 = 0.67 |
Während P(X ≤ 3) = 0.43 also noch klar unter der geforderten Wahrscheinlichkeit von 0.45 liegt, ist P(X ≤ 4) = 0.67 klar darüber.
Oder andersrum: P(X ≥ 4) = 1 - P(X ≤ 3) = 0.57 (die Summe der blauen Säulenhöhen von 4 bis 11) ist klar über der geforderten Wahrscheinlichkeit von 0.55, während P(X ≥ 5) = 1 - P(X ≤ 4) = 0.33 (die Summe der Säulenhöhen von 5 bis 11) klar darunter liegt.
Somit ist das gesuchte k = 4.
kumulierte Binomialverteilung
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,1. Wie groß ist die Wahrscheinlichkeit bei 100 Versuchen weniger als 4 mal im grünen Bereich zu landen?
Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=100 und p=0.1.
= = + + + = 0.0078364871211844 ≈ 0.0078(TI-Befehl: binomcdf(100,0.1,3))
Binomialverteilung X>=k
Beispiel:
Ein Würfel wird 61 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mehr als 8 mal eine 6 (p=1/6) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=61 und p=.
(TI-Befehl: 1-binomcdf(61,,8))
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 75% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 55 Versuchen mindestens 46 und weniger als 48 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=55 und p=0.75.
=
(TI-Befehl: binomcdf(55,0.75,47) - binomcdf(55,0.75,45))
