Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,3 Ausschuss. Es werden nacheinander 4 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass alle entnommenen Chips defekt sind.

Lösung einblenden

Da die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips nicht defekt ist) p = 0,3 beträgt, muss die Wahrscheinlichkeit für 4 Treffer bei 4 Versuchen P = 0,3 4 ≈ 0.0081 betragen, da ja bei jedem Versuch ein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 9 4 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 9 4 ) = 9! 4! ⋅ (9 - 4)! = 9! 4! ⋅ 5! = 9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 4⋅3⋅2⋅1 ⋅ 5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
5! = 5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 9 4 ) = 9⋅8⋅7⋅6 4⋅3⋅2⋅1

= 9⋅2⋅7⋅6 3⋅2⋅1 (gekürzt mit 4)

= 3⋅2⋅7⋅6 2⋅1 (gekürzt mit 3)

= 3⋅7⋅6 1 (gekürzt mit 2)

= 126

Binomialkoeffizient Anwendungen

Beispiel:

Die Sportlehrerin Frau Hertz braucht für eine Demonstration 3 Schülerinnen. Diese möchte sie zufällig aus der 20-köpfigen Sportgruppe losen. Wie viele verschiedene 3er-Gruppen sind so möglich?

Lösung einblenden

Für die erste Stelle ist jede Schülerin möglich. Es gibt also 20 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Schülerin nicht mehr möglich, es gibt also nur noch 19 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 18 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 201918 = 6840 Möglichkeiten, die 20 Möglichkeiten (Schülerinnen) auf die 3 "Ziehungen" (geloste) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 3er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 3er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 3er-Gruppe möglich. Es gibt also 3 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 2 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 1 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 321 = 6 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 3er-Gruppe.

Wir müssen deswegen die 6840 Möglichkeiten für nach Reihenfolge sortierte 3er-Gruppen durch die 6 Möglichkeiten, die 3er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 6840 6 = 1140 Möglichkeiten für 3er-Gruppen, die aus 20 Elementen (Schülerinnen) gebildet werden.

Die hier durchgeführte Berechnung 201918 321 könnte man mit 17! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

1140 = 201918 321 = 201918 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 321 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 = 20! 3! ⋅ 17! = ( 20 3 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.

Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 21 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 25 6 ) = 25! 6! ⋅ 19! = 25⋅24⋅23⋅22⋅21⋅20 6⋅5⋅4⋅3⋅2⋅1 = 177100 verschiedene Möglichkeiten, die 6 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 6 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 21 ist, bzw. wie viele Möglichkeiten es gibt, 6 von 25 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 21 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 24 Zahlen (alle außer der 21) zu setzen, also ( 24 5 ) = 24! 5! ⋅ 19! = 24⋅23⋅22⋅21⋅20 5⋅4⋅3⋅2⋅1 = 42504.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 42504 177100 ≈ 0.24, also ca. 24%.

Formel v. Bernoulli

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 94 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so genau 22 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=94 und p= 1 4 .

P 1 4 94 (X=22) = ( 94 22 ) ( 1 4 )22 ( 3 4 )72 =0.090720303310653≈ 0.0907
(TI-Befehl: binompdf(94,1/4,22))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.55.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.55 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.55 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.55=0.45 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.02≈ 0 + 0.02 = 0.02
2≈ 0.06≈ 0.02 + 0.06 = 0.08
3≈ 0.14≈ 0.08 + 0.14 = 0.22
4≈ 0.2≈ 0.22 + 0.2 = 0.42
5≈ 0.22≈ 0.42 + 0.22 = 0.64
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 4) = 0.42 also noch klar unter der geforderten Wahrscheinlichkeit von 0.45 liegt, ist P(X ≤ 5) = 0.64 klar darüber.

Oder andersrum: P(X ≥ 5) = 1 - P(X ≤ 4) = 0.58 (die Summe der blauen Säulenhöhen von 5 bis 14) ist klar über der geforderten Wahrscheinlichkeit von 0.55, während P(X ≥ 6) = 1 - P(X ≤ 5) = 0.36 (die Summe der Säulenhöhen von 6 bis 14) klar darunter liegt.

Somit ist das gesuchte k = 5.

kumulierte Binomialverteilung

Beispiel:

Ein Zufallsexperiment wird 22 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p= 0,3.Wie groß ist dabei die Wahrscheinlichkeit, höchstens 5 Treffer zu erzielen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=22 und p=0.3.

P0.322 (X5) = P0.322 (X=0) + P0.322 (X=1) + P0.322 (X=2) +... + P0.322 (X=5) = 0.31341278596319 ≈ 0.3134
(TI-Befehl: binomcdf(22,0.3,5))

Binomialverteilung X>=k

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,18 entsteht. Es wird eine Stichprobe der Menge 49 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon 6 oder sogar noch mehr Chips defekt sind?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=49 und p=0.18.

...
3
4
5
6
7
8
...

P0.1849 (X6) = 1 - P0.1849 (X5) = 0.8967
(TI-Befehl: 1-binomcdf(49,0.18,5))

Binomialverteilung X ∈ [l;k]

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,75 entsteht. Es wird eine Stichprobe der Menge 92 entnommen. Wie groß ist die Wahrscheinlichkeit, dass die Anzahl der defekten Chips mindestens 61 und höchstens 72 beträgt?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=92 und p=0.75.

P0.7592 (61X72) =

...
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
...

P0.7592 (X72) - P0.7592 (X60) ≈ 0.7986 - 0.0231 ≈ 0.7755
(TI-Befehl: binomcdf(92,0.75,72) - binomcdf(92,0.75,60))