Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 30%. Es wird 6 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass kein einziges mal in den grünen Bereich gedreht wird.

Lösung einblenden

Da die Wahrscheinlichkeit für keinen Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) q = 1 - 0,3 = 0,7 beträgt, muss die Wahrscheinlichkeit für 6 Nicht-Treffer bei 6 Versuchen P = 0,7 6 ≈ 0.1176 betragen, da ja bei jedem Versuch kein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 10 9 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 10 9 ) = 10! 9! ⋅ (10 - 9)! = 10! 9! ⋅ 1! = 10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 ⋅ 1
ausgeht, sieht man schnell, dass man mit der
9! = 9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 10 9 ) = 10 1

= 10

Binomialkoeffizient Anwendungen

Beispiel:

Bei einem Glücksspiel sind auf einem Schein 8 Felder abgedruckt. Von diesen 8 Felder soll sich der Spieler 2 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?

Lösung einblenden

Für die erste Stelle ist jedes Feld möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 87 = 56 Möglichkeiten, die 8 Möglichkeiten (abgedruckte Felder) auf die 2 "Ziehungen" (angekreuzte Felder) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 56 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 56 2 = 28 Möglichkeiten für 2er-Gruppen, die aus 8 Elementen (abgedruckte Felder) gebildet werden.

Die hier durchgeführte Berechnung 87 21 könnte man mit 6! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

28 = 87 21 = 87 6 5 4 3 2 1 21 6 5 4 3 2 1 = 8! 2! ⋅ 6! = ( 8 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.

Es werden 4 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 12 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 40 4 ) = 40! 4! ⋅ 36! = 40⋅39⋅38⋅37 4⋅3⋅2⋅1 = 91390 verschiedene Möglichkeiten, die 4 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 4 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 12 ist, bzw. wie viele Möglichkeiten es gibt, 4 von 40 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 12 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 39 Zahlen (alle außer der 12) zu setzen, also ( 39 3 ) = 39! 3! ⋅ 36! = 39⋅38⋅37 3⋅2⋅1 = 9139.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 9139 91390 ≈ 0.1, also ca. 10%.

Formel v. Bernoulli

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, genau 2 Glückskekse mit einer Peproni zu erwischen, wenn man 99 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=99 und p= 1 8 .

P 1 8 99 (X=2) = ( 99 2 ) ( 1 8 )2 ( 7 8 )97 =0.00017965216025243≈ 0.0002
(TI-Befehl: binompdf(99,1/8,2))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.65.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.65 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.65 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.65=0.35 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.03≈ 0 + 0.03 = 0.03
2≈ 0.09≈ 0.03 + 0.09 = 0.12
3≈ 0.18≈ 0.12 + 0.18 = 0.3
4≈ 0.24≈ 0.3 + 0.24 = 0.54
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 3) = 0.3 also noch klar unter der geforderten Wahrscheinlichkeit von 0.35 liegt, ist P(X ≤ 4) = 0.54 klar darüber.

Oder andersrum: P(X ≥ 4) = 1 - P(X ≤ 3) = 0.7 (die Summe der blauen Säulenhöhen von 4 bis 11) ist klar über der geforderten Wahrscheinlichkeit von 0.65, während P(X ≥ 5) = 1 - P(X ≤ 4) = 0.46 (die Summe der Säulenhöhen von 5 bis 11) klar darunter liegt.

Somit ist das gesuchte k = 4.

kumulierte Binomialverteilung

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, nicht mehr als 4 Glückskekse mit einer Peproni zu erwischen, wenn man 33 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=33 und p= 1 8 .

P 1 8 33 (X4) = P 1 8 33 (X=0) + P 1 8 33 (X=1) + P 1 8 33 (X=2) +... + P 1 8 33 (X=4) = 0.6030300348838 ≈ 0.603
(TI-Befehl: binomcdf(33,1/8,4))

Binomialverteilung X>=k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,85. Wie groß ist die Wahrscheinlichkeit bei 92 Versuchen mindestens 80 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=92 und p=0.85.

...
77
78
79
80
81
82
...

P0.8592 (X80) = 1 - P0.8592 (X79) = 0.3634
(TI-Befehl: 1-binomcdf(92,0.85,79))

Binomialverteilung X ∈ [l;k]

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, mehr als 1 und höchstens 10 Glückskekse mit einer Peproni zu erwischen, wenn man 54 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=54 und p=0.125.

P0.12554 (2X10) =

...
0
1
2
3
4
5
6
7
8
9
10
11
12
...

P0.12554 (X10) - P0.12554 (X1) ≈ 0.9319 - 0.0064 ≈ 0.9255
(TI-Befehl: binomcdf(54,0.125,10) - binomcdf(54,0.125,1))