Aufgabenbeispiele von Basics
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 60%. Es wird 4 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass bei jeder Drehung außer der dritten in den grünen Bereich gedreht wird.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,6, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,6 = . Da ja der Nicht-Treffer genau im dritten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:
P = 0,6⋅0,6⋅⋅0,6 = ≈ 0.0864 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
18! = 18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 2)
= 190
Binomialkoeffizient Anwendungen
Beispiel:
Ein Skatkartenspiel hat 32 verschiedende Karten. Aus einem gut gemischten Stapel werden 4 Karten gezogen.Wie viele verschiedene Möglichkeiten gibt es hierfür?
Für die erste Stelle ist jede Karte möglich. Es gibt also 32 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Karte nicht mehr möglich, es gibt also nur noch 31 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 30 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel HerzAss - KreuzBube - Karo7 und KreuzBube - Karo7 - HerzAss zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 863040 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 35960 Möglichkeiten für 4er-Gruppen, die aus 32 Elementen (Karten) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 28! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
35960 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 35 Kugeln, die mit den Zahlen 1 bis 35 beschriftet sind.
Es werden 5 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 9 dabei ist?
Es gibt insgesamt = = = 324632 verschiedene Möglichkeiten, die 5 Kugeln aus den 35 zu ziehen, bzw. von 35 Zahlen 5 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 9 ist, bzw. wie viele Möglichkeiten es gibt, 5 von 35 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 9 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 34 Zahlen (alle außer der 9) zu setzen, also = = = 46376.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.1429, also ca. 14.29%.
Formel v. Bernoulli
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 91 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so genau 17 Fragen richtig beantwortet hat?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=91 und p=.
= =0.038007722353714≈ 0.038(TI-Befehl: binompdf(91,1/4,17))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.65.
Wenn P(X ≥ k) ≥ 0.65 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.65 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.65=0.35 als Wahrscheinlichkeit übrig bleiben darf.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.02 | ≈ 0 + 0.02 = 0.02 |
| 1 | ≈ 0.08 | ≈ 0.02 + 0.08 = 0.1 |
| 2 | ≈ 0.18 | ≈ 0.1 + 0.18 = 0.28 |
| 3 | ≈ 0.24 | ≈ 0.28 + 0.24 = 0.52 |
Während P(X ≤ 2) = 0.28 also noch klar unter der geforderten Wahrscheinlichkeit von 0.35 liegt, ist P(X ≤ 3) = 0.52 klar darüber.
Oder andersrum: P(X ≥ 3) = 1 - P(X ≤ 2) = 0.72 (die Summe der blauen Säulenhöhen von 3 bis 14) ist klar über der geforderten Wahrscheinlichkeit von 0.65, während P(X ≥ 4) = 1 - P(X ≤ 3) = 0.48 (die Summe der Säulenhöhen von 4 bis 14) klar darunter liegt.
Somit ist das gesuchte k = 3.
kumulierte Binomialverteilung
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, nicht mehr als 5 Glückskekse mit einer Peproni zu erwischen, wenn man 30 Glückskekse kauft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=30 und p=.
= + + +... + = 0.83557929956138 ≈ 0.8356(TI-Befehl: binomcdf(30,1/8,5))
Binomialverteilung X>=k
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, 3 oder mehr Glückskekse mit einer Peproni zu erwischen, wenn man 68 Glückskekse kauft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=68 und p=0.125.
(TI-Befehl: 1-binomcdf(68,0.125,2))
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 94% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 41 Versuchen mindestens 35 und weniger als 40 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=41 und p=0.94.
=
(TI-Befehl: binomcdf(41,0.94,39) - binomcdf(41,0.94,34))
