Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

Ein idealer Würfel wird 5 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass dabei genau einmal eine "6" gewürfelt wird.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass eine "6" gewürfelt wird) beträgt p = 1 6 , für einen Nicht-Treffer (also hier, dass keine "6" gewürfelt wird) beträgt sie q = 1 - 1 6 = 5 6 . Hier gibt es nun mehrere Möglichkeiten, wann der eine Treffer eintritt:

Treffer - NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer (also Treffer im 1-ten Versuch)
NichtTreffer - Treffer - NichtTreffer - NichtTreffer - NichtTreffer (also Treffer im 2-ten Versuch)
NichtTreffer - NichtTreffer - Treffer - NichtTreffer - NichtTreffer (also Treffer im 3-ten Versuch)
NichtTreffer - NichtTreffer - NichtTreffer - Treffer - NichtTreffer (also Treffer im 4-ten Versuch)
NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer - Treffer (also Treffer im 5-ten Versuch)

Bei jedem dieser 5 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = 1 6 · ( 5 6 ) 4 .

Für die gesuchte Wahrscheinlichkeit aller 5 Fälle gilt somit P = 5 · 1 6 · ( 5 6 ) 4 ≈ 0.4019 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 6 3 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 6 3 ) = 6! 3! ⋅ (6 - 3)! = 6! 3! ⋅ 3! = 6⋅5⋅4⋅3⋅2⋅1 3⋅2⋅1 ⋅ 3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
3! = 3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 6 3 ) = 6⋅5⋅4 3⋅2⋅1

= 2⋅5⋅4 2⋅1 (gekürzt mit 3)

= 5⋅4 1 (gekürzt mit 2)

= 20

Binomialkoeffizient Anwendungen

Beispiel:

Bei einem Glücksspiel sind auf einem Schein 10 Felder abgedruckt. Von diesen 10 Felder soll sich der Spieler 5 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?

Lösung einblenden

Für die erste Stelle ist jedes Feld möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 109876 = 30240 Möglichkeiten, die 10 Möglichkeiten (abgedruckte Felder) auf die 5 "Ziehungen" (angekreuzte Felder) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 54321 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 30240 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 30240 120 = 252 Möglichkeiten für 5er-Gruppen, die aus 10 Elementen (abgedruckte Felder) gebildet werden.

Die hier durchgeführte Berechnung 109876 54321 könnte man mit 5! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

252 = 109876 54321 = 109876 5 4 3 2 1 54321 5 4 3 2 1 = 10! 5! ⋅ 5! = ( 10 5 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.

Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 23 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 30 6 ) = 30! 6! ⋅ 24! = 30⋅29⋅28⋅27⋅26⋅25 6⋅5⋅4⋅3⋅2⋅1 = 593775 verschiedene Möglichkeiten, die 6 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 6 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 23 ist, bzw. wie viele Möglichkeiten es gibt, 6 von 30 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 23 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 29 Zahlen (alle außer der 23) zu setzen, also ( 29 5 ) = 29! 5! ⋅ 24! = 29⋅28⋅27⋅26⋅25 5⋅4⋅3⋅2⋅1 = 118755.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 118755 593775 ≈ 0.2, also ca. 20%.

Formel v. Bernoulli

Beispiel:

Eine Münze wird 81 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 47 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=81 und p=0.5.

P0.581 (X=47) = ( 81 47 ) 0.547 0.534 =0.031401539314539≈ 0.0314
(TI-Befehl: binompdf(81,0.5,47))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.45.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0≈ 0 + 0 = 0
2≈ 0.01≈ 0 + 0.01 = 0.01
3≈ 0.05≈ 0.01 + 0.05 = 0.06
4≈ 0.1≈ 0.06 + 0.1 = 0.16
5≈ 0.17≈ 0.16 + 0.17 = 0.33
6≈ 0.21≈ 0.33 + 0.21 = 0.54
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 5) = 0.33 also noch klar unter der geforderten Wahrscheinlichkeit von 0.45 liegt, ist P(X ≤ 6) = 0.54 klar darüber.

Somit ist das gesuchte k = 6.

kumulierte Binomialverteilung

Beispiel:

Eine Münze wird 86 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass weniger als 42 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=86 und p=0.5.

P0.586 (X<42) = P0.586 (X41) = P0.586 (X=0) + P0.586 (X=1) + P0.586 (X=2) +... + P0.586 (X=41) = 0.37326719114453 ≈ 0.3733
(TI-Befehl: binomcdf(86,0.5,41))

Binomialverteilung X>=k

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,25 entsteht. Es wird eine Stichprobe der Menge 52 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon 18 oder sogar noch mehr Chips defekt sind?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=52 und p=0.25.

...
15
16
17
18
19
20
...

P0.2552 (X18) = 1 - P0.2552 (X17) = 0.0781
(TI-Befehl: 1-binomcdf(52,0.25,17))

Binomialverteilung X ∈ [l;k]

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,45 entsteht. Es wird eine Stichprobe der Menge 100 entnommen. Wie groß ist die Wahrscheinlichkeit, dass die Anzahl der defekten Chips mindestens 41 und höchstens 55 beträgt?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=100 und p=0.45.

P0.45100 (41X55) =

...
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
...

P0.45100 (X55) - P0.45100 (X40) ≈ 0.9824 - 0.1831 ≈ 0.7993
(TI-Befehl: binomcdf(100,0.45,55) - binomcdf(100,0.45,40))