Aufgabenbeispiele von Basics
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,4 Ausschuss. Es werden nacheinander 4 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass dabei genau ein Chip defekt ist.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips defekt sind) beträgt p = 0,4, für einen Nicht-Treffer (also hier, dass ein entnommener Chips nicht defekt ist) beträgt sie q = 1 - 0,4 = . Hier gibt es nun mehrere Möglichkeiten, wann der eine Treffer eintritt:
Treffer - NichtTreffer - NichtTreffer - NichtTreffer (also Treffer im 1-ten Versuch)
NichtTreffer - Treffer - NichtTreffer - NichtTreffer (also Treffer im 2-ten Versuch)
NichtTreffer - NichtTreffer - Treffer - NichtTreffer (also Treffer im 3-ten Versuch)
NichtTreffer - NichtTreffer - NichtTreffer - Treffer (also Treffer im 4-ten Versuch)
Bei jedem dieser 4 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = .
Für die gesuchte Wahrscheinlichkeit aller 4 Fälle gilt somit P = ≈ 0.3456 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
4! = 4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 4)
= (gekürzt mit 3)
= (gekürzt mit 2)
= 70
Binomialkoeffizient Anwendungen
Beispiel:
Bei einem Glücksspiel sind auf einem Schein 10 Felder abgedruckt. Von diesen 10 Felder soll sich der Spieler 2 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?
Für die erste Stelle ist jedes Feld möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 90 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 45 Möglichkeiten für 2er-Gruppen, die aus 10 Elementen (abgedruckte Felder) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 8! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
45 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.
Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 3 und die 15 dabei sind?
Es gibt insgesamt = = = 1081575 verschiedene Möglichkeiten, die 8 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 8 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 3 und die 15 sind, bzw. wie viele Möglichkeiten es gibt, 8 von 25 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 3 und der 15 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 23 Zahlen (alle außer der 3 und der 15) zu setzen, also = = = 100947.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0933, also ca. 9.33%.
Formel v. Bernoulli
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, genau 12 Glückskekse mit einer Peproni zu erwischen, wenn man 91 Glückskekse kauft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=91 und p=.
= =0.12038124418329≈ 0.1204(TI-Befehl: binompdf(91,1/8,12))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.75.
Wenn P(X ≥ k) ≥ 0.75 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.75 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.75=0.25 als Wahrscheinlichkeit übrig bleiben darf.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.01 | ≈ 0 + 0.01 = 0.01 |
| 1 | ≈ 0.05 | ≈ 0.01 + 0.05 = 0.06 |
| 2 | ≈ 0.14 | ≈ 0.06 + 0.14 = 0.2 |
| 3 | ≈ 0.23 | ≈ 0.2 + 0.23 = 0.43 |
Während P(X ≤ 2) = 0.2 also noch klar unter der geforderten Wahrscheinlichkeit von 0.25 liegt, ist P(X ≤ 3) = 0.43 klar darüber.
Oder andersrum: P(X ≥ 3) = 1 - P(X ≤ 2) = 0.8 (die Summe der blauen Säulenhöhen von 3 bis 11) ist klar über der geforderten Wahrscheinlichkeit von 0.75, während P(X ≥ 4) = 1 - P(X ≤ 3) = 0.57 (die Summe der Säulenhöhen von 4 bis 11) klar darunter liegt.
Somit ist das gesuchte k = 3.
kumulierte Binomialverteilung
Beispiel:
Ein Würfel wird 56 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass weniger als 10 mal eine 6 (p=1/6) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=56 und p=.
= = + + +... + = 0.53976508715145 ≈ 0.5398(TI-Befehl: binomcdf(56,1/6,9))
Binomialverteilung X>=k
Beispiel:
Ein Zufallsexperiment wird 34 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p=0,1.
Wie groß ist dabei die Wahrscheinlichkeit, mindestens 6 Treffer zu erzielen?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=34 und p=0.1.
(TI-Befehl: 1-binomcdf(34,0.1,5))
Binomialverteilung X ∈ [l;k]
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,45 entsteht. Es wird eine Stichprobe der Menge 51 entnommen. Wie groß ist die Wahrscheinlichkeit, dass die Anzahl der defekten Chips mindestens 20 und höchstens 26 beträgt?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=51 und p=0.45.
=
(TI-Befehl: binomcdf(51,0.45,26) - binomcdf(51,0.45,19))
