Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,25 Ausschuss. Es werden nacheinander 6 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass nur beim ersten Chip ein Defekt vorliegt.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips defekt sind) beträgt p = 0,25, für einen Nicht-Treffer (also hier, dass ein entnommener Chips nicht defekt ist) beträgt sie q = 1 - 0,25 = 0,75. Da ja der Treffer genau im ersten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:

P = 0,25⋅0,750,750,750,750,75 = 0,25 · 0,75 5 ≈ 0.0593 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 25 23 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 25 23 ) = 25! 23! ⋅ (25 - 23)! = 25! 23! ⋅ 2! = 25⋅24⋅23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 ⋅ 2⋅1
ausgeht, sieht man schnell, dass man mit der
23! = 23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 25 23 ) = 25⋅24 2⋅1

= 25⋅12 1 (gekürzt mit 2)

= 300

Binomialkoeffizient Anwendungen

Beispiel:

Eine Eisdiele bietet 8 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 2 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?

Lösung einblenden

Für die erste Stelle ist jede Eissorte möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 87 = 56 Möglichkeiten, die 8 Möglichkeiten (Eissorten) auf die 2 "Ziehungen" (Kugeln) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 56 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 56 2 = 28 Möglichkeiten für 2er-Gruppen, die aus 8 Elementen (Eissorten) gebildet werden.

Die hier durchgeführte Berechnung 87 21 könnte man mit 6! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

28 = 87 21 = 87 6 5 4 3 2 1 21 6 5 4 3 2 1 = 8! 2! ⋅ 6! = ( 8 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.

Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 3 und die 19 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 30 8 ) = 30! 8! ⋅ 22! = 30⋅29⋅28⋅27⋅26⋅25⋅24⋅23 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 = 5852925 verschiedene Möglichkeiten, die 8 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 8 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 3 und die 19 sind, bzw. wie viele Möglichkeiten es gibt, 8 von 30 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 3 und der 19 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 28 Zahlen (alle außer der 3 und der 19) zu setzen, also ( 28 6 ) = 28! 6! ⋅ 22! = 28⋅27⋅26⋅25⋅24⋅23 6⋅5⋅4⋅3⋅2⋅1 = 376740.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 376740 5852925 ≈ 0.0644, also ca. 6.44%.

Formel v. Bernoulli

Beispiel:

Ein Würfel wird 27 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 6 mal eine 6 (p=1/6) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=27 und p= 1 6 .

P 1 6 27 (X=6) = ( 27 6 ) ( 1 6 )6 ( 5 6 )21 =0.13790903311277≈ 0.1379
(TI-Befehl: binompdf(27,1/6,6))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.2.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.03≈ 0 + 0.03 = 0.03
2≈ 0.09≈ 0.03 + 0.09 = 0.12
3≈ 0.18≈ 0.12 + 0.18 = 0.3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 2) = 0.12 also noch klar unter der geforderten Wahrscheinlichkeit von 0.2 liegt, ist P(X ≤ 3) = 0.3 klar darüber.

Somit ist das gesuchte k = 3.

kumulierte Binomialverteilung

Beispiel:

Ein Würfel wird 65 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass weniger als 18 mal eine 6 (p=1/6) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=65 und p= 1 6 .

P 1 6 65 (X<18) = P 1 6 65 (X17) = P 1 6 65 (X=0) + P 1 6 65 (X=1) + P 1 6 65 (X=2) +... + P 1 6 65 (X=17) = 0.98248308264226 ≈ 0.9825
(TI-Befehl: binomcdf(65,1/6,17))

Binomialverteilung X>=k

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, 5 oder mehr Glückskekse mit einer Peproni zu erwischen, wenn man 50 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.125.

...
2
3
4
5
6
7
...

P0.12550 (X5) = 1 - P0.12550 (X4) = 0.7654
(TI-Befehl: 1-binomcdf(50,0.125,4))

Binomialverteilung X ∈ [l;k]

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 56 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 10, aber weniger als 15 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=56 und p=0.25.

P0.2556 (10X14) =

...
7
8
9
10
11
12
13
14
15
16
...

P0.2556 (X14) - P0.2556 (X9) ≈ 0.5712 - 0.078 ≈ 0.4932
(TI-Befehl: binomcdf(56,0.25,14) - binomcdf(56,0.25,9))