Aufgabenbeispiele von Basics
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 70%. Es wird 3 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass nur beim zweiten Drehen der grüne Bereich erzielt wird.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,7, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,7 = . Da ja der Treffer genau im zweiten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:
P = ⋅0,7⋅ = ≈ 0.063 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
9! = 9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 3)
= (gekürzt mit 2)
= 220
Binomialkoeffizient Anwendungen
Beispiel:
Bei einem Glücksspiel sind auf einem Schein 10 Felder abgedruckt. Von diesen 10 Felder soll sich der Spieler 3 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?
Für die erste Stelle ist jedes Feld möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 3er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 3er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 3er-Gruppe möglich. Es gibt also 3 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 2 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 1 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 720 Möglichkeiten für nach Reihenfolge sortierte 3er-Gruppen durch die 6 Möglichkeiten, die 3er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 120 Möglichkeiten für 3er-Gruppen, die aus 10 Elementen (abgedruckte Felder) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 7! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
120 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.
Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 4 dabei ist?
Es gibt insgesamt = = = 77520 verschiedene Möglichkeiten, die 7 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 7 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 4 ist, bzw. wie viele Möglichkeiten es gibt, 7 von 20 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 4 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 19 Zahlen (alle außer der 4) zu setzen, also = = = 27132.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.35, also ca. 35%.
Formel v. Bernoulli
Beispiel:
Ein Würfel wird 79 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 10 mal eine 6 (p=1/6) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=79 und p=.
= =0.081950050558707≈ 0.082(TI-Befehl: binompdf(79,1/6,10))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.2.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.02 | ≈ 0 + 0.02 = 0.02 |
| 1 | ≈ 0.08 | ≈ 0.02 + 0.08 = 0.1 |
| 2 | ≈ 0.18 | ≈ 0.1 + 0.18 = 0.28 |
Während P(X ≤ 1) = 0.1 also noch klar unter der geforderten Wahrscheinlichkeit von 0.2 liegt, ist P(X ≤ 2) = 0.28 klar darüber.
Somit ist das gesuchte k = 2.
kumulierte Binomialverteilung
Beispiel:
Ein Zufallsexperiment wird 76 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p= 0,35. Wie groß ist dabei die Wahrscheinlichkeit, weniger als 27 Treffer zu erzielen?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=76 und p=0.35.
= = + + +... + = 0.49524346163009 ≈ 0.4952(TI-Befehl: binomcdf(76,0.35,26))
Binomialverteilung X>=k
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,25. Wie groß ist die Wahrscheinlichkeit bei 39 Versuchen mindestens 13 mal im grünen Bereich zu landen?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=39 und p=0.25.
(TI-Befehl: 1-binomcdf(39,0.25,12))
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein Zufallsexperiment wird 98 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p=0,6.Wie groß ist dabei die Wahrscheinlichkeit, mindestens 60, aber höchstens 65 Treffer zu erzielen?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=98 und p=0.6.
=
(TI-Befehl: binomcdf(98,0.6,65) - binomcdf(98,0.6,59))
