Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

Ein idealer Würfel wird 4 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass keine einzige "6" gewürfelt wird.

Lösung einblenden

Da die Wahrscheinlichkeit für keinen Treffer (also hier, dass keine "6" gewürfelt wird) q = 1 - 1 6 = 5 6 beträgt, muss die Wahrscheinlichkeit für 4 Nicht-Treffer bei 4 Versuchen P = ( 5 6 ) 4 ≈ 0.4823 betragen, da ja bei jedem Versuch kein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 4 3 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 4 3 ) = 4! 3! ⋅ (4 - 3)! = 4! 3! ⋅ 1! = 4⋅3⋅2⋅1 3⋅2⋅1 ⋅ 1
ausgeht, sieht man schnell, dass man mit der
3! = 3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 4 3 ) = 4 1

= 4

Binomialkoeffizient Anwendungen

Beispiel:

Ein Skatkartenspiel hat 32 verschiedende Karten. Aus einem gut gemischten Stapel werden 5 Karten gezogen.Wie viele verschiedene Möglichkeiten gibt es hierfür?

Lösung einblenden

Für die erste Stelle ist jede Karte möglich. Es gibt also 32 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Karte nicht mehr möglich, es gibt also nur noch 31 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 30 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 3231302928 = 24165120 Möglichkeiten, die 32 Möglichkeiten (Karten) auf die 5 "Ziehungen" (gezogene) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel HerzAss - KreuzBube - Karo7 und KreuzBube - Karo7 - HerzAss zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 54321 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 24165120 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 24165120 120 = 201376 Möglichkeiten für 5er-Gruppen, die aus 32 Elementen (Karten) gebildet werden.

Die hier durchgeführte Berechnung 3231302928 54321 könnte man mit 27! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

201376 = 3231302928 54321 = 3231302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 54321 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 = 32! 5! ⋅ 27! = ( 32 5 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.

Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 8, die 9 und die 13 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 25 7 ) = 25! 7! ⋅ 18! = 25⋅24⋅23⋅22⋅21⋅20⋅19 7⋅6⋅5⋅4⋅3⋅2⋅1 = 480700 verschiedene Möglichkeiten, die 7 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 7 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn drei der gezogenen Zahlen die 8, die 9 und die 13 sind, bzw. wie viele Möglichkeiten es gibt, 7 von 25 Zahlen anzukreuzen, wobei drei Kreuze sicher auf der der 8, der 9 und der 13 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 22 Zahlen (alle außer der 8, der 9 und der 13) zu setzen, also ( 22 4 ) = 22! 4! ⋅ 18! = 22⋅21⋅20⋅19 4⋅3⋅2⋅1 = 7315.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 7315 480700 ≈ 0.0152, also ca. 1.52%.

Formel v. Bernoulli

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, genau 11 Glückskekse mit einer Peproni zu erwischen, wenn man 92 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=92 und p= 1 8 .

P 1 8 92 (X=11) = ( 92 11 ) ( 1 8 )11 ( 7 8 )81 =0.12562005758756≈ 0.1256
(TI-Befehl: binompdf(92,1/8,11))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.45.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.01≈ 0 + 0.01 = 0.01
1≈ 0.04≈ 0.01 + 0.04 = 0.05
2≈ 0.11≈ 0.05 + 0.11 = 0.16
3≈ 0.19≈ 0.16 + 0.19 = 0.35
4≈ 0.23≈ 0.35 + 0.23 = 0.58
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 3) = 0.35 also noch klar unter der geforderten Wahrscheinlichkeit von 0.45 liegt, ist P(X ≤ 4) = 0.58 klar darüber.

Somit ist das gesuchte k = 4.

kumulierte Binomialverteilung

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 61%. Wie groß ist die Wahrscheinlichkeit dass er von 79 Versuchen weniger als 47 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=79 und p=0.61.

P0.6179 (X<47) = P0.6179 (X46) = P0.6179 (X=0) + P0.6179 (X=1) + P0.6179 (X=2) +... + P0.6179 (X=46) = 0.34580109319404 ≈ 0.3458
(TI-Befehl: binomcdf(79,0.61,46))

Binomialverteilung X>=k

Beispiel:

Ein Basketballspieler hat eine Trefferquote von p=0,65. Wie groß ist die Wahrscheinlichkeit dass er von 44 Versuchen mehr als 23 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=44 und p=0.65.

...
21
22
23
24
25
26
...

P0.6544 (X>23) = P0.6544 (X24) = 1 - P0.6544 (X23) = 0.9444
(TI-Befehl: 1-binomcdf(44,0.65,23))

Binomialverteilung X ∈ [l;k]

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 92% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 88 Versuchen mindestens 87 und weniger als 89 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=88 und p=0.92.

P0.9288 (X87) =

...
84
85
86
87
88

P0.9288 (X88) - P0.9288 (X86) ≈ 1 - 0.9944 ≈ 0.0056
(TI-Befehl: binomcdf(88,0.92,88) - binomcdf(88,0.92,86))