Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,25 Ausschuss. Es werden nacheinander 5 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass alle entnommenen Chips defekt sind.

Lösung einblenden

Da die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips nicht defekt ist) p = 0,25 beträgt, muss die Wahrscheinlichkeit für 5 Treffer bei 5 Versuchen P = 0,25 5 ≈ 0.001 betragen, da ja bei jedem Versuch ein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 25 23 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 25 23 ) = 25! 23! ⋅ (25 - 23)! = 25! 23! ⋅ 2! = 25⋅24⋅23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 ⋅ 2⋅1
ausgeht, sieht man schnell, dass man mit der
23! = 23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 25 23 ) = 25⋅24 2⋅1

= 25⋅12 1 (gekürzt mit 2)

= 300

Binomialkoeffizient Anwendungen

Beispiel:

Eine Mathelehrerin verlost unter den 6 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 4 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 4er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 6543 = 360 Möglichkeiten, die 6 Möglichkeiten (SchülerInnen) auf die 4 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4321 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 360 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 360 24 = 15 Möglichkeiten für 4er-Gruppen, die aus 6 Elementen (SchülerInnen) gebildet werden.

Die hier durchgeführte Berechnung 6543 4321 könnte man mit 2! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

15 = 6543 4321 = 6543 2 1 4321 2 1 = 6! 4! ⋅ 2! = ( 6 4 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 35 Kugeln, die mit den Zahlen 1 bis 35 beschriftet sind.

Es werden 5 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 28 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 35 5 ) = 35! 5! ⋅ 30! = 35⋅34⋅33⋅32⋅31 5⋅4⋅3⋅2⋅1 = 324632 verschiedene Möglichkeiten, die 5 Kugeln aus den 35 zu ziehen, bzw. von 35 Zahlen 5 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 28 ist, bzw. wie viele Möglichkeiten es gibt, 5 von 35 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 28 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 34 Zahlen (alle außer der 28) zu setzen, also ( 34 4 ) = 34! 4! ⋅ 30! = 34⋅33⋅32⋅31 4⋅3⋅2⋅1 = 46376.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 46376 324632 ≈ 0.1429, also ca. 14.29%.

Formel v. Bernoulli

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,3. Wie groß ist die Wahrscheinlichkeit bei 72 Versuchen genau 23 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=72 und p=0.3.

P0.372 (X=23) = ( 72 23 ) 0.323 0.749 =0.094186661530225≈ 0.0942
(TI-Befehl: binompdf(72,0.3,23))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.7.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.7 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.7 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.7=0.3 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.02≈ 0 + 0.02 = 0.02
1≈ 0.1≈ 0.02 + 0.1 = 0.12
2≈ 0.21≈ 0.12 + 0.21 = 0.33
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 1) = 0.12 also noch klar unter der geforderten Wahrscheinlichkeit von 0.3 liegt, ist P(X ≤ 2) = 0.33 klar darüber.

Oder andersrum: P(X ≥ 2) = 1 - P(X ≤ 1) = 0.88 (die Summe der blauen Säulenhöhen von 2 bis 13) ist klar über der geforderten Wahrscheinlichkeit von 0.7, während P(X ≥ 3) = 1 - P(X ≤ 2) = 0.67 (die Summe der Säulenhöhen von 3 bis 13) klar darunter liegt.

Somit ist das gesuchte k = 2.

kumulierte Binomialverteilung

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 63 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so bis zu 9 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=63 und p=0.25.

P0.2563 (X9) = P0.2563 (X=0) + P0.2563 (X=1) + P0.2563 (X=2) +... + P0.2563 (X=9) = 0.029288668227593 ≈ 0.0293
(TI-Befehl: binomcdf(63,0.25,9))

Binomialverteilung X>=k

Beispiel:

Ein Würfel wird 60 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mehr als 8 mal eine 6 (p=1/6) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=60 und p= 1 6 .

...
6
7
8
9
10
11
...

P 1 6 60 (X>8) = P 1 6 60 (X9) = 1 - P 1 6 60 (X8) = 0.688
(TI-Befehl: 1-binomcdf(60, 1 6 ,8))

Binomialverteilung X ∈ [l;k]

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, mehr als 6 und höchstens 11 Glückskekse mit einer Peproni zu erwischen, wenn man 71 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=71 und p=0.125.

P0.12571 (7X11) =

...
4
5
6
7
8
9
10
11
12
13
...

P0.12571 (X11) - P0.12571 (X6) ≈ 0.8288 - 0.2003 ≈ 0.6285
(TI-Befehl: binomcdf(71,0.125,11) - binomcdf(71,0.125,6))