Aufgabenbeispiele von Basics
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 40%. Es wird 4 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass bei jeder Drehung außer der zweiten in den grünen Bereich gedreht wird.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,4, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,4 = . Da ja der Nicht-Treffer genau im zweiten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:
P = 0,4⋅⋅0,4⋅0,4 = ≈ 0.0384 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
5! = 5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:
=
= 6
Binomialkoeffizient Anwendungen
Beispiel:
Bei einem Glücksspiel sind auf einem Schein 10 Felder abgedruckt. Von diesen 10 Felder soll sich der Spieler 5 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?
Für die erste Stelle ist jedes Feld möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 30240 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 252 Möglichkeiten für 5er-Gruppen, die aus 10 Elementen (abgedruckte Felder) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 5! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
252 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 35 Kugeln, die mit den Zahlen 1 bis 35 beschriftet sind.
Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 25 dabei ist?
Es gibt insgesamt = = = 1623160 verschiedene Möglichkeiten, die 6 Kugeln aus den 35 zu ziehen, bzw. von 35 Zahlen 6 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 25 ist, bzw. wie viele Möglichkeiten es gibt, 6 von 35 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 25 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 34 Zahlen (alle außer der 25) zu setzen, also = = = 278256.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.1714, also ca. 17.14%.
Formel v. Bernoulli
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 50% entsteht. Es wird eine Stichprobe der Menge 62 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 31 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=62 und p=0.5.
= =0.10092368634714≈ 0.1009(TI-Befehl: binompdf(62,0.5,31))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.25.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0 | ≈ 0 + 0 = 0 |
| 1 | ≈ 0.01 | ≈ 0 + 0.01 = 0.01 |
| 2 | ≈ 0.05 | ≈ 0.01 + 0.05 = 0.06 |
| 3 | ≈ 0.11 | ≈ 0.06 + 0.11 = 0.17 |
| 4 | ≈ 0.18 | ≈ 0.17 + 0.18 = 0.35 |
Während P(X ≤ 3) = 0.17 also noch klar unter der geforderten Wahrscheinlichkeit von 0.25 liegt, ist P(X ≤ 4) = 0.35 klar darüber.
Somit ist das gesuchte k = 4.
kumulierte Binomialverteilung
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 75%. Wie groß ist die Wahrscheinlichkeit dass er von 100 Versuchen nicht mehr als 74 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=100 und p=0.75.
= + + +... + = 0.44652917615175 ≈ 0.4465(TI-Befehl: binomcdf(100,0.75,74))
Binomialverteilung X>=k
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,45. Wie groß ist die Wahrscheinlichkeit bei 68 Versuchen mehr als 32 mal im grünen Bereich zu landen?
Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=68 und p=0.45.
(TI-Befehl: 1-binomcdf(68,0.45,32))
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 56 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 9, aber weniger als 21 Fragen richtig beantwortet hat?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=56 und p=0.25.
=
(TI-Befehl: binomcdf(56,0.25,20) - binomcdf(56,0.25,8))
