Aufgabenbeispiele von Basics
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,25 Ausschuss. Es werden nacheinander 6 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass alle entnommenen Chips fehlerfrei funktionieren.
Da die Wahrscheinlichkeit für keinen Treffer (also hier, dass ein entnommener Chips nicht defekt ist) q = 1 - 0,25 = beträgt, muss die Wahrscheinlichkeit für 6 Nicht-Treffer bei 6 Versuchen P = ≈ 0.178 betragen, da ja bei jedem Versuch kein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
3! = 3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 3)
= (gekürzt mit 2)
= 20
Binomialkoeffizient Anwendungen
Beispiel:
Eine Mathelehrerin verlost unter den 8 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 4 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 4er-Gruppe der glücklichen Gewinner?
Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 1680 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 70 Möglichkeiten für 4er-Gruppen, die aus 8 Elementen (SchülerInnen) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 4! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
70 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.
Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 5, die 8 und die 14 dabei sind?
Es gibt insgesamt = = = 480700 verschiedene Möglichkeiten, die 7 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 7 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn drei der gezogenen Zahlen die 5, die 8 und die 14 sind, bzw. wie viele Möglichkeiten es gibt, 7 von 25 Zahlen anzukreuzen, wobei drei Kreuze sicher auf der der 5, der 8 und der 14 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 22 Zahlen (alle außer der 5, der 8 und der 14) zu setzen, also = = = 7315.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0152, also ca. 1.52%.
Formel v. Bernoulli
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,25. Wie groß ist die Wahrscheinlichkeit bei 59 Versuchen genau 20 mal im grünen Bereich zu landen?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=59 und p=0.25.
= =0.034080295442719≈ 0.0341(TI-Befehl: binompdf(59,0.25,20))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.5.
Wenn P(X ≥ k) ≥ 0.5 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.5 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.5=0.5 als Wahrscheinlichkeit übrig bleiben darf.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.03 | ≈ 0 + 0.03 = 0.03 |
| 1 | ≈ 0.12 | ≈ 0.03 + 0.12 = 0.15 |
| 2 | ≈ 0.23 | ≈ 0.15 + 0.23 = 0.38 |
| 3 | ≈ 0.27 | ≈ 0.38 + 0.27 = 0.65 |
Während P(X ≤ 2) = 0.38 also noch klar unter der geforderten Wahrscheinlichkeit von 0.5 liegt, ist P(X ≤ 3) = 0.65 klar darüber.
Oder andersrum: P(X ≥ 3) = 1 - P(X ≤ 2) = 0.62 (die Summe der blauen Säulenhöhen von 3 bis 10) ist klar über der geforderten Wahrscheinlichkeit von 0.5, während P(X ≥ 4) = 1 - P(X ≤ 3) = 0.35 (die Summe der Säulenhöhen von 4 bis 10) klar darunter liegt.
Somit ist das gesuchte k = 3.
kumulierte Binomialverteilung
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 15%. Wie groß ist die Wahrscheinlichkeit dass er von 31 Versuchen nicht mehr als 7 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=31 und p=0.15.
= + + +... + = 0.917795616385 ≈ 0.9178(TI-Befehl: binomcdf(31,0.15,7))
Binomialverteilung X>=k
Beispiel:
Ein Basketballspieler hat eine Trefferquote von p=0,95. Wie groß ist die Wahrscheinlichkeit dass er von 80 Versuchen mehr als 68 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=80 und p=0.95.
(TI-Befehl: 1-binomcdf(80,0.95,68))
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 51 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 11, aber weniger als 14 Fragen richtig beantwortet hat?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=51 und p=0.25.
=
(TI-Befehl: binomcdf(51,0.25,13) - binomcdf(51,0.25,10))
