Aufgabenbeispiele von Basics
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 30%. Es wird 4 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass nur beim dritten Drehen der grüne Bereich erzielt wird.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,3, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,3 = . Da ja der Treffer genau im dritten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:
P = ⋅⋅0,3⋅ = ≈ 0.1029 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
20! = 20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= 21
Binomialkoeffizient Anwendungen
Beispiel:
Eine Mathelehrerin verlost unter den 6 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 3 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 3er-Gruppe der glücklichen Gewinner?
Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 3er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 3er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 3er-Gruppe möglich. Es gibt also 3 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 2 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 1 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 120 Möglichkeiten für nach Reihenfolge sortierte 3er-Gruppen durch die 6 Möglichkeiten, die 3er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 20 Möglichkeiten für 3er-Gruppen, die aus 6 Elementen (SchülerInnen) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 3! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
20 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.
Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 5, die 7 und die 17 dabei sind?
Es gibt insgesamt = = = 18643560 verschiedene Möglichkeiten, die 7 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 7 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn drei der gezogenen Zahlen die 5, die 7 und die 17 sind, bzw. wie viele Möglichkeiten es gibt, 7 von 40 Zahlen anzukreuzen, wobei drei Kreuze sicher auf der der 5, der 7 und der 17 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 37 Zahlen (alle außer der 5, der 7 und der 17) zu setzen, also = = = 66045.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0035, also ca. 0.35%.
Formel v. Bernoulli
Beispiel:
Eine Münze wird 21 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 13 mal "Zahl" (p=0,5) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=21 und p=0.5.
= =0.097031593322754≈ 0.097(TI-Befehl: binompdf(21,0.5,13))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.3.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0 | ≈ 0 + 0 = 0 |
| 1 | ≈ 0.02 | ≈ 0 + 0.02 = 0.02 |
| 2 | ≈ 0.06 | ≈ 0.02 + 0.06 = 0.08 |
| 3 | ≈ 0.14 | ≈ 0.08 + 0.14 = 0.22 |
| 4 | ≈ 0.2 | ≈ 0.22 + 0.2 = 0.42 |
Während P(X ≤ 3) = 0.22 also noch klar unter der geforderten Wahrscheinlichkeit von 0.3 liegt, ist P(X ≤ 4) = 0.42 klar darüber.
Somit ist das gesuchte k = 4.
kumulierte Binomialverteilung
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, nicht mehr als 10 Glückskekse mit einer Peproni zu erwischen, wenn man 97 Glückskekse kauft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=97 und p=.
= + + +... + = 0.31955390352609 ≈ 0.3196(TI-Befehl: binomcdf(97,1/8,10))
Binomialverteilung X>=k
Beispiel:
Ein Zufallsexperiment wird 29 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p=0,15.
Wie groß ist dabei die Wahrscheinlichkeit, mindestens 2 Treffer zu erzielen?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=29 und p=0.15.
(TI-Befehl: 1-binomcdf(29,0.15,1))
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein Zufallsexperiment wird 64 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p=0,65.Wie groß ist dabei die Wahrscheinlichkeit, mindestens 43, aber höchstens 47 Treffer zu erzielen?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=64 und p=0.65.
=
(TI-Befehl: binomcdf(64,0.65,47) - binomcdf(64,0.65,42))
