Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 60%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass dabei genau einmal in den grünen Bereich gedreht wird.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,6, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,6 = 0,4. Hier gibt es nun mehrere Möglichkeiten, wann der eine Treffer eintritt:

Treffer - NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer (also Treffer im 1-ten Versuch)
NichtTreffer - Treffer - NichtTreffer - NichtTreffer - NichtTreffer (also Treffer im 2-ten Versuch)
NichtTreffer - NichtTreffer - Treffer - NichtTreffer - NichtTreffer (also Treffer im 3-ten Versuch)
NichtTreffer - NichtTreffer - NichtTreffer - Treffer - NichtTreffer (also Treffer im 4-ten Versuch)
NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer - Treffer (also Treffer im 5-ten Versuch)

Bei jedem dieser 5 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = 0,6 · 0,4 4 .

Für die gesuchte Wahrscheinlichkeit aller 5 Fälle gilt somit P = 5 · 0,6 · 0,4 4 ≈ 0.0768 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 8 2 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 8 2 ) = 8! 2! ⋅ (8 - 2)! = 8! 2! ⋅ 6! = 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 2⋅1 ⋅ 6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
6! = 6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 8 2 ) = 8⋅7 2⋅1

= 4⋅7 1 (gekürzt mit 2)

= 28

Binomialkoeffizient Anwendungen

Beispiel:

Eine Eisdiele bietet 8 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 2 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?

Lösung einblenden

Für die erste Stelle ist jede Eissorte möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 87 = 56 Möglichkeiten, die 8 Möglichkeiten (Eissorten) auf die 2 "Ziehungen" (Kugeln) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 56 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 56 2 = 28 Möglichkeiten für 2er-Gruppen, die aus 8 Elementen (Eissorten) gebildet werden.

Die hier durchgeführte Berechnung 87 21 könnte man mit 6! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

28 = 87 21 = 87 6 5 4 3 2 1 21 6 5 4 3 2 1 = 8! 2! ⋅ 6! = ( 8 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.

Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 25 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 30 8 ) = 30! 8! ⋅ 22! = 30⋅29⋅28⋅27⋅26⋅25⋅24⋅23 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 = 5852925 verschiedene Möglichkeiten, die 8 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 8 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 25 ist, bzw. wie viele Möglichkeiten es gibt, 8 von 30 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 25 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 7 Kreuze auf 29 Zahlen (alle außer der 25) zu setzen, also ( 29 7 ) = 29! 7! ⋅ 22! = 29⋅28⋅27⋅26⋅25⋅24⋅23 7⋅6⋅5⋅4⋅3⋅2⋅1 = 1560780.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 1560780 5852925 ≈ 0.2667, also ca. 26.67%.

Formel v. Bernoulli

Beispiel:

Eine Münze wird 34 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 15 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=34 und p=0.5.

P0.534 (X=15) = ( 34 15 ) 0.515 0.519 =0.10803152807057≈ 0.108
(TI-Befehl: binompdf(34,0.5,15))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.55.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.55 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.55 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.55=0.45 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.01≈ 0 + 0.01 = 0.01
1≈ 0.05≈ 0.01 + 0.05 = 0.06
2≈ 0.14≈ 0.06 + 0.14 = 0.2
3≈ 0.22≈ 0.2 + 0.22 = 0.42
4≈ 0.23≈ 0.42 + 0.23 = 0.65
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 3) = 0.42 also noch klar unter der geforderten Wahrscheinlichkeit von 0.45 liegt, ist P(X ≤ 4) = 0.65 klar darüber.

Oder andersrum: P(X ≥ 4) = 1 - P(X ≤ 3) = 0.58 (die Summe der blauen Säulenhöhen von 4 bis 13) ist klar über der geforderten Wahrscheinlichkeit von 0.55, während P(X ≥ 5) = 1 - P(X ≤ 4) = 0.35 (die Summe der Säulenhöhen von 5 bis 13) klar darunter liegt.

Somit ist das gesuchte k = 4.

kumulierte Binomialverteilung

Beispiel:

Eine Münze wird 92 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass höchstens 49 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=92 und p=0.5.

P0.592 (X49) = P0.592 (X=0) + P0.592 (X=1) + P0.592 (X=2) +... + P0.592 (X=49) = 0.76714627711347 ≈ 0.7671
(TI-Befehl: binomcdf(92,0.5,49))

Binomialverteilung X>=k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,95. Wie groß ist die Wahrscheinlichkeit bei 81 Versuchen mehr als 78 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=81 und p=0.95.

...
76
77
78
79
80

P0.9581 (X>78) = P0.9581 (X79) = 1 - P0.9581 (X78) = 0.2234
(TI-Befehl: 1-binomcdf(81,0.95,78))

Binomialverteilung X ∈ [l;k]

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 99 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 17, aber weniger als 36 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=99 und p=0.25.

P0.2599 (17X35) =

...
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
...

P0.2599 (X35) - P0.2599 (X16) ≈ 0.9921 - 0.0239 ≈ 0.9682
(TI-Befehl: binomcdf(99,0.25,35) - binomcdf(99,0.25,16))