Aufgabenbeispiele von Basics
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,35 Ausschuss. Es werden nacheinander 4 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass beim zweiten Chip alles fehlerfrei funktioniert.
Da hier ja nur eine Aussage über den 2-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 2-te Versuch
betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)
Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = 1 - 0,35 = ≈ 0.65 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
23! = 23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 2)
= 300
Binomialkoeffizient Anwendungen
Beispiel:
Bei einem Glücksspiel sind auf einem Schein 10 Felder abgedruckt. Von diesen 10 Felder soll sich der Spieler 5 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?
Für die erste Stelle ist jedes Feld möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 30240 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 252 Möglichkeiten für 5er-Gruppen, die aus 10 Elementen (abgedruckte Felder) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 5! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
252 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.
Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 18 und die 19 dabei sind?
Es gibt insgesamt = = = 1081575 verschiedene Möglichkeiten, die 8 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 8 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 18 und die 19 sind, bzw. wie viele Möglichkeiten es gibt, 8 von 25 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 18 und der 19 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 23 Zahlen (alle außer der 18 und der 19) zu setzen, also = = = 100947.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0933, also ca. 9.33%.
Formel v. Bernoulli
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, genau 8 Glückskekse mit einer Peproni zu erwischen, wenn man 48 Glückskekse kauft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=48 und p=.
= =0.10773217340875≈ 0.1077(TI-Befehl: binompdf(48,1/8,8))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.75.
Wenn P(X ≥ k) ≥ 0.75 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.75 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.75=0.25 als Wahrscheinlichkeit übrig bleiben darf.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.01 | ≈ 0 + 0.01 = 0.01 |
| 1 | ≈ 0.05 | ≈ 0.01 + 0.05 = 0.06 |
| 2 | ≈ 0.14 | ≈ 0.06 + 0.14 = 0.2 |
| 3 | ≈ 0.22 | ≈ 0.2 + 0.22 = 0.42 |
Während P(X ≤ 2) = 0.2 also noch klar unter der geforderten Wahrscheinlichkeit von 0.25 liegt, ist P(X ≤ 3) = 0.42 klar darüber.
Oder andersrum: P(X ≥ 3) = 1 - P(X ≤ 2) = 0.8 (die Summe der blauen Säulenhöhen von 3 bis 13) ist klar über der geforderten Wahrscheinlichkeit von 0.75, während P(X ≥ 4) = 1 - P(X ≤ 3) = 0.58 (die Summe der Säulenhöhen von 4 bis 13) klar darunter liegt.
Somit ist das gesuchte k = 3.
kumulierte Binomialverteilung
Beispiel:
Ein Würfel wird 53 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass weniger als 11 mal eine 6 (p=1/6) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=53 und p=.
= = + + +... + = 0.738793374967 ≈ 0.7388(TI-Befehl: binomcdf(53,1/6,10))
Binomialverteilung X>=k
Beispiel:
Ein Zufallsexperiment wird 60 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p=0,9.
Wie groß ist dabei die Wahrscheinlichkeit, mindestens 56 Treffer zu erzielen?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=60 und p=0.9.
(TI-Befehl: 1-binomcdf(60,0.9,55))
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 67 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 15, aber weniger als 19 Fragen richtig beantwortet hat?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=67 und p=0.25.
=
(TI-Befehl: binomcdf(67,0.25,18) - binomcdf(67,0.25,14))
