Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 60%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass dabei genau einmal in den grünen Bereich gedreht wird.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,6, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,6 = 0,4. Hier gibt es nun mehrere Möglichkeiten, wann der eine Treffer eintritt:

Treffer - NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer (also Treffer im 1-ten Versuch)
NichtTreffer - Treffer - NichtTreffer - NichtTreffer - NichtTreffer (also Treffer im 2-ten Versuch)
NichtTreffer - NichtTreffer - Treffer - NichtTreffer - NichtTreffer (also Treffer im 3-ten Versuch)
NichtTreffer - NichtTreffer - NichtTreffer - Treffer - NichtTreffer (also Treffer im 4-ten Versuch)
NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer - Treffer (also Treffer im 5-ten Versuch)

Bei jedem dieser 5 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = 0,6 · 0,4 4 .

Für die gesuchte Wahrscheinlichkeit aller 5 Fälle gilt somit P = 5 · 0,6 · 0,4 4 ≈ 0.0768 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 8 5 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 8 5 ) = 8! 5! ⋅ (8 - 5)! = 8! 5! ⋅ 3! = 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 5⋅4⋅3⋅2⋅1 ⋅ 3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
5! = 5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 8 5 ) = 8⋅7⋅6 3⋅2⋅1

= 8⋅7⋅2 2⋅1 (gekürzt mit 3)

= 8⋅7 1 (gekürzt mit 2)

= 56

Binomialkoeffizient Anwendungen

Beispiel:

Ein Skatkartenspiel hat 32 verschiedende Karten. Aus einem gut gemischten Stapel werden 4 Karten gezogen.Wie viele verschiedene Möglichkeiten gibt es hierfür?

Lösung einblenden

Für die erste Stelle ist jede Karte möglich. Es gibt also 32 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Karte nicht mehr möglich, es gibt also nur noch 31 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 30 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 32313029 = 863040 Möglichkeiten, die 32 Möglichkeiten (Karten) auf die 4 "Ziehungen" (gezogene) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel HerzAss - KreuzBube - Karo7 und KreuzBube - Karo7 - HerzAss zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4321 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 863040 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 863040 24 = 35960 Möglichkeiten für 4er-Gruppen, die aus 32 Elementen (Karten) gebildet werden.

Die hier durchgeführte Berechnung 32313029 4321 könnte man mit 28! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

35960 = 32313029 4321 = 32313029 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 4321 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 = 32! 4! ⋅ 28! = ( 32 4 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.

Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 4 und die 20 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 30 8 ) = 30! 8! ⋅ 22! = 30⋅29⋅28⋅27⋅26⋅25⋅24⋅23 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 = 5852925 verschiedene Möglichkeiten, die 8 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 8 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 4 und die 20 sind, bzw. wie viele Möglichkeiten es gibt, 8 von 30 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 4 und der 20 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 28 Zahlen (alle außer der 4 und der 20) zu setzen, also ( 28 6 ) = 28! 6! ⋅ 22! = 28⋅27⋅26⋅25⋅24⋅23 6⋅5⋅4⋅3⋅2⋅1 = 376740.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 376740 5852925 ≈ 0.0644, also ca. 6.44%.

Formel v. Bernoulli

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 71 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so genau 15 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=71 und p= 1 4 .

P 1 4 71 (X=15) = ( 71 15 ) ( 1 4 )15 ( 3 4 )56 =0.085866925910248≈ 0.0859
(TI-Befehl: binompdf(71,1/4,15))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.4.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.02≈ 0 + 0.02 = 0.02
1≈ 0.08≈ 0.02 + 0.08 = 0.1
2≈ 0.18≈ 0.1 + 0.18 = 0.28
3≈ 0.24≈ 0.28 + 0.24 = 0.52
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 2) = 0.28 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 3) = 0.52 klar darüber.

Somit ist das gesuchte k = 3.

kumulierte Binomialverteilung

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 44%. Wie groß ist die Wahrscheinlichkeit dass er von 62 Versuchen weniger als 27 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=62 und p=0.44.

P0.4462 (X<27) = P0.4462 (X26) = P0.4462 (X=0) + P0.4462 (X=1) + P0.4462 (X=2) +... + P0.4462 (X=26) = 0.42295403148678 ≈ 0.423
(TI-Befehl: binomcdf(62,0.44,26))

Binomialverteilung X>=k

Beispiel:

Ein Würfel wird 32 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 4 mal eine 6 (p=1/6) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=32 und p= 1 6 .

...
1
2
3
4
5
6
...

P 1 6 32 (X4) = 1 - P 1 6 32 (X3) = 0.8042
(TI-Befehl: 1-binomcdf(32, 1 6 ,3))

Binomialverteilung X ∈ [l;k]

Beispiel:

Ein Würfel wird 57 mal geworfen. Wie groß ist die Wahrscheinlichkeit, dass mehr als 10 mal, aber weniger als 16 mal eine sechs gewürfelt wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=57 und p= 1 6 .

P 1 6 57 (11X15) =

...
8
9
10
11
12
13
14
15
16
17
...

P 1 6 57 (X15) - P 1 6 57 (X10) ≈ 0.9786 - 0.6516 ≈ 0.327
(TI-Befehl: binomcdf(57, 1 6 ,15) - binomcdf(57, 1 6 ,10))