Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,3 Ausschuss. Es werden nacheinander 5 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass alle entnommenen Chips defekt sind.

Lösung einblenden

Da die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips nicht defekt ist) p = 0,3 beträgt, muss die Wahrscheinlichkeit für 5 Treffer bei 5 Versuchen P = 0,3 5 ≈ 0.0024 betragen, da ja bei jedem Versuch ein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 20 2 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 20 2 ) = 20! 2! ⋅ (20 - 2)! = 20! 2! ⋅ 18! = 20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 2⋅1 ⋅ 18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
18! = 18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 20 2 ) = 20⋅19 2⋅1

= 10⋅19 1 (gekürzt mit 2)

= 190

Binomialkoeffizient Anwendungen

Beispiel:

Bei einem Glücksspiel sind auf einem Schein 10 Felder abgedruckt. Von diesen 10 Felder soll sich der Spieler 5 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?

Lösung einblenden

Für die erste Stelle ist jedes Feld möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 109876 = 30240 Möglichkeiten, die 10 Möglichkeiten (abgedruckte Felder) auf die 5 "Ziehungen" (angekreuzte Felder) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 54321 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 30240 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 30240 120 = 252 Möglichkeiten für 5er-Gruppen, die aus 10 Elementen (abgedruckte Felder) gebildet werden.

Die hier durchgeführte Berechnung 109876 54321 könnte man mit 5! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

252 = 109876 54321 = 109876 5 4 3 2 1 54321 5 4 3 2 1 = 10! 5! ⋅ 5! = ( 10 5 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.

Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 20 und die 40 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 40 8 ) = 40! 8! ⋅ 32! = 40⋅39⋅38⋅37⋅36⋅35⋅34⋅33 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 = 76904685 verschiedene Möglichkeiten, die 8 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 8 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 20 und die 40 sind, bzw. wie viele Möglichkeiten es gibt, 8 von 40 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 20 und der 40 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 38 Zahlen (alle außer der 20 und der 40) zu setzen, also ( 38 6 ) = 38! 6! ⋅ 32! = 38⋅37⋅36⋅35⋅34⋅33 6⋅5⋅4⋅3⋅2⋅1 = 2760681.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 2760681 76904685 ≈ 0.0359, also ca. 3.59%.

Formel v. Bernoulli

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,7. Wie groß ist die Wahrscheinlichkeit bei 47 Versuchen genau 35 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=47 und p=0.7.

P0.747 (X=35) = ( 47 35 ) 0.735 0.312 =0.10519240766271≈ 0.1052
(TI-Befehl: binompdf(47,0.7,35))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.4.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.02≈ 0 + 0.02 = 0.02
1≈ 0.08≈ 0.02 + 0.08 = 0.1
2≈ 0.18≈ 0.1 + 0.18 = 0.28
3≈ 0.24≈ 0.28 + 0.24 = 0.52
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 2) = 0.28 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 3) = 0.52 klar darüber.

Somit ist das gesuchte k = 3.

kumulierte Binomialverteilung

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,15. Wie groß ist die Wahrscheinlichkeit bei 96 Versuchen weniger als 14 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=96 und p=0.15.

P0.1596 (X<14) = P0.1596 (X13) = P0.1596 (X=0) + P0.1596 (X=1) + P0.1596 (X=2) +... + P0.1596 (X=13) = 0.41086896652716 ≈ 0.4109
(TI-Befehl: binomcdf(96,0.15,13))

Binomialverteilung X>=k

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, 4 oder mehr Glückskekse mit einer Peproni zu erwischen, wenn man 74 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=74 und p=0.125.

...
1
2
3
4
5
6
...

P0.12574 (X4) = 1 - P0.12574 (X3) = 0.9869
(TI-Befehl: 1-binomcdf(74,0.125,3))

Binomialverteilung X ∈ [l;k]

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 83 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 22, aber weniger als 27 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=83 und p=0.25.

P0.2583 (22X26) =

...
19
20
21
22
23
24
25
26
27
28
...

P0.2583 (X26) - P0.2583 (X21) ≈ 0.9247 - 0.5833 ≈ 0.3414
(TI-Befehl: binomcdf(83,0.25,26) - binomcdf(83,0.25,21))