Aufgabenbeispiele von Basics
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,35 Ausschuss. Es werden nacheinander 6 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass nur beim ersten Chip kein Defekt vorliegt.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips defekt sind) beträgt p = 0,35, für einen Nicht-Treffer (also hier, dass ein entnommener Chips nicht defekt ist) beträgt sie q = 1 - 0,35 = . Da ja der Nicht-Treffer genau im ersten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:
P = ⋅0,35⋅0,35⋅0,35⋅0,35⋅0,35 = ≈ 0.0034 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
6! = 6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:
=
= 1
Binomialkoeffizient Anwendungen
Beispiel:
Eine Mathelehrerin verlost unter den 10 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 5 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 5er-Gruppe der glücklichen Gewinner?
Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 30240 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 252 Möglichkeiten für 5er-Gruppen, die aus 10 Elementen (SchülerInnen) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 5! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
252 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.
Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 10 und die 22 dabei sind?
Es gibt insgesamt = = = 1081575 verschiedene Möglichkeiten, die 8 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 8 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 10 und die 22 sind, bzw. wie viele Möglichkeiten es gibt, 8 von 25 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 10 und der 22 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 23 Zahlen (alle außer der 10 und der 22) zu setzen, also = = = 100947.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0933, also ca. 9.33%.
Formel v. Bernoulli
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 95 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so genau 22 Fragen richtig beantwortet hat?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=95 und p=.
= =0.088545501518959≈ 0.0885(TI-Befehl: binompdf(95,1/4,22))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.65.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.01 | ≈ 0 + 0.01 = 0.01 |
| 1 | ≈ 0.07 | ≈ 0.01 + 0.07 = 0.08 |
| 2 | ≈ 0.18 | ≈ 0.08 + 0.18 = 0.26 |
| 3 | ≈ 0.25 | ≈ 0.26 + 0.25 = 0.51 |
| 4 | ≈ 0.24 | ≈ 0.51 + 0.24 = 0.75 |
Während P(X ≤ 3) = 0.51 also noch klar unter der geforderten Wahrscheinlichkeit von 0.65 liegt, ist P(X ≤ 4) = 0.75 klar darüber.
Somit ist das gesuchte k = 4.
kumulierte Binomialverteilung
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 85%. Wie groß ist die Wahrscheinlichkeit dass er von 73 Versuchen nicht mehr als 58 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=73 und p=0.85.
= + + +... + = 0.12422290445778 ≈ 0.1242(TI-Befehl: binomcdf(73,0.85,58))
Binomialverteilung X>=k
Beispiel:
Ein Würfel wird 77 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mehr als 13 mal eine 6 (p=1/6) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=77 und p=.
(TI-Befehl: 1-binomcdf(77,,13))
Binomialverteilung X ∈ [l;k]
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,65. Wie groß ist die Wahrscheinlichkeit bei 42 Versuchen, mehr als 23 mal und höchstens 28 mal im grünen Bereich zu landen?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=42 und p=0.65.
=
(TI-Befehl: binomcdf(42,0.65,28) - binomcdf(42,0.65,23))
