Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,3 Ausschuss. Es werden nacheinander 3 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass alle entnommenen Chips defekt sind.

Lösung einblenden

Da die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips nicht defekt ist) p = 0,3 beträgt, muss die Wahrscheinlichkeit für 3 Treffer bei 3 Versuchen P = 0,3 3 ≈ 0.027 betragen, da ja bei jedem Versuch ein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 9 6 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 9 6 ) = 9! 6! ⋅ (9 - 6)! = 9! 6! ⋅ 3! = 9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 6⋅5⋅4⋅3⋅2⋅1 ⋅ 3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
6! = 6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 9 6 ) = 9⋅8⋅7 3⋅2⋅1

= 3⋅8⋅7 2⋅1 (gekürzt mit 3)

= 3⋅4⋅7 1 (gekürzt mit 2)

= 84

Binomialkoeffizient Anwendungen

Beispiel:

Bei einem Glücksspiel sind auf einem Schein 6 Felder abgedruckt. Von diesen 6 Felder soll sich der Spieler 4 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?

Lösung einblenden

Für die erste Stelle ist jedes Feld möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 6543 = 360 Möglichkeiten, die 6 Möglichkeiten (abgedruckte Felder) auf die 4 "Ziehungen" (angekreuzte Felder) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4321 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 360 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 360 24 = 15 Möglichkeiten für 4er-Gruppen, die aus 6 Elementen (abgedruckte Felder) gebildet werden.

Die hier durchgeführte Berechnung 6543 4321 könnte man mit 2! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

15 = 6543 4321 = 6543 2 1 4321 2 1 = 6! 4! ⋅ 2! = ( 6 4 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.

Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 21 und die 30 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 40 8 ) = 40! 8! ⋅ 32! = 40⋅39⋅38⋅37⋅36⋅35⋅34⋅33 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 = 76904685 verschiedene Möglichkeiten, die 8 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 8 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 21 und die 30 sind, bzw. wie viele Möglichkeiten es gibt, 8 von 40 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 21 und der 30 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 38 Zahlen (alle außer der 21 und der 30) zu setzen, also ( 38 6 ) = 38! 6! ⋅ 32! = 38⋅37⋅36⋅35⋅34⋅33 6⋅5⋅4⋅3⋅2⋅1 = 2760681.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 2760681 76904685 ≈ 0.0359, also ca. 3.59%.

Formel v. Bernoulli

Beispiel:

Eine Münze wird 63 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 27 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=63 und p=0.5.

P0.563 (X=27) = ( 63 27 ) 0.527 0.536 =0.053067576719799≈ 0.0531
(TI-Befehl: binompdf(63,0.5,27))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.6.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.01≈ 0 + 0.01 = 0.01
2≈ 0.03≈ 0.01 + 0.03 = 0.04
3≈ 0.08≈ 0.04 + 0.08 = 0.12
4≈ 0.15≈ 0.12 + 0.15 = 0.27
5≈ 0.21≈ 0.27 + 0.21 = 0.48
6≈ 0.21≈ 0.48 + 0.21 = 0.69
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 5) = 0.48 also noch klar unter der geforderten Wahrscheinlichkeit von 0.6 liegt, ist P(X ≤ 6) = 0.69 klar darüber.

Somit ist das gesuchte k = 6.

kumulierte Binomialverteilung

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 57 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so bis zu 15 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=57 und p=0.25.

P0.2557 (X15) = P0.2557 (X=0) + P0.2557 (X=1) + P0.2557 (X=2) +... + P0.2557 (X=15) = 0.65679648477386 ≈ 0.6568
(TI-Befehl: binomcdf(57,0.25,15))

Binomialverteilung X>=k

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,22 entsteht. Es wird eine Stichprobe der Menge 60 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon 15 oder sogar noch mehr Chips defekt sind?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=60 und p=0.22.

...
12
13
14
15
16
17
...

P0.2260 (X15) = 1 - P0.2260 (X14) = 0.3339
(TI-Befehl: 1-binomcdf(60,0.22,14))

Binomialverteilung X ∈ [l;k]

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 93% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 57 Versuchen mindestens 48 und weniger als 55 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=57 und p=0.93.

P0.9357 (48X54) =

...
45
46
47
48
49
50
51
52
53
54
55
56

P0.9357 (X54) - P0.9357 (X47) ≈ 0.771 - 0.0058 ≈ 0.7652
(TI-Befehl: binomcdf(57,0.93,54) - binomcdf(57,0.93,47))