Aufgabenbeispiele von Basics
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Ein idealer Würfel wird 5 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass jeder Wurf eine "6" ist, außer beim dritten Versuch.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass eine "6" gewürfelt wird) beträgt p = , für einen Nicht-Treffer (also hier, dass keine "6" gewürfelt wird) beträgt sie q = 1 - = . Da ja der Nicht-Treffer genau im dritten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:
P = ⋅⋅⋅⋅ = ≈ 0.0006 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
20! = 20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= 21
Binomialkoeffizient Anwendungen
Beispiel:
Eine Mathelehrerin verlost unter den 6 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 5 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 5er-Gruppe der glücklichen Gewinner?
Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 720 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 6 Möglichkeiten für 5er-Gruppen, die aus 6 Elementen (SchülerInnen) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 1! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
6 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.
Es werden 4 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 40 dabei ist?
Es gibt insgesamt = = = 91390 verschiedene Möglichkeiten, die 4 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 4 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 40 ist, bzw. wie viele Möglichkeiten es gibt, 4 von 40 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 40 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 39 Zahlen (alle außer der 40) zu setzen, also = = = 9139.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.1, also ca. 10%.
Formel v. Bernoulli
Beispiel:
Ein Basketballspieler hat eine Trefferquote von p=0,15. Wie groß ist die Wahrscheinlichkeit dass er von 85 Versuchen genau 11 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=85 und p=0.15.
= =0.11043355977316≈ 0.1104(TI-Befehl: binompdf(85,0.15,11))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.4.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.06 | ≈ 0 + 0.06 = 0.06 |
| 1 | ≈ 0.19 | ≈ 0.06 + 0.19 = 0.25 |
| 2 | ≈ 0.28 | ≈ 0.25 + 0.28 = 0.53 |
Während P(X ≤ 1) = 0.25 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 2) = 0.53 klar darüber.
Somit ist das gesuchte k = 2.
kumulierte Binomialverteilung
Beispiel:
Ein Würfel wird 26 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass weniger als 7 mal eine 6 (p=1/6) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=26 und p=.
= = + + +... + = 0.87096675587605 ≈ 0.871(TI-Befehl: binomcdf(26,1/6,6))
Binomialverteilung X>=k
Beispiel:
Ein Würfel wird 95 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mehr als 19 mal eine 6 (p=1/6) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=95 und p=.
(TI-Befehl: 1-binomcdf(95,,19))
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 93% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 92 Versuchen mindestens 86 und weniger als 90 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=92 und p=0.93.
=
(TI-Befehl: binomcdf(92,0.93,89) - binomcdf(92,0.93,85))
