Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

Ein idealer Würfel wird 4 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass jedes mal eine "6" gewürfelt wird.

Lösung einblenden

Da die Wahrscheinlichkeit für einen Treffer (also hier, dass keine "6" gewürfelt wird) p = 1 6 beträgt, muss die Wahrscheinlichkeit für 4 Treffer bei 4 Versuchen P = ( 1 6 ) 4 ≈ 0.0008 betragen, da ja bei jedem Versuch ein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 9 5 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 9 5 ) = 9! 5! ⋅ (9 - 5)! = 9! 5! ⋅ 4! = 9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 5⋅4⋅3⋅2⋅1 ⋅ 4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
5! = 5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 9 5 ) = 9⋅8⋅7⋅6 4⋅3⋅2⋅1

= 9⋅2⋅7⋅6 3⋅2⋅1 (gekürzt mit 4)

= 3⋅2⋅7⋅6 2⋅1 (gekürzt mit 3)

= 3⋅7⋅6 1 (gekürzt mit 2)

= 126

Binomialkoeffizient Anwendungen

Beispiel:

Eine Mathelehrerin verlost unter den 8 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 4 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 4er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 8765 = 1680 Möglichkeiten, die 8 Möglichkeiten (SchülerInnen) auf die 4 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4321 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 1680 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 1680 24 = 70 Möglichkeiten für 4er-Gruppen, die aus 8 Elementen (SchülerInnen) gebildet werden.

Die hier durchgeführte Berechnung 8765 4321 könnte man mit 4! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

70 = 8765 4321 = 8765 4 3 2 1 4321 4 3 2 1 = 8! 4! ⋅ 4! = ( 8 4 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.

Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 23 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 40 6 ) = 40! 6! ⋅ 34! = 40⋅39⋅38⋅37⋅36⋅35 6⋅5⋅4⋅3⋅2⋅1 = 3838380 verschiedene Möglichkeiten, die 6 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 6 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 23 ist, bzw. wie viele Möglichkeiten es gibt, 6 von 40 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 23 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 39 Zahlen (alle außer der 23) zu setzen, also ( 39 5 ) = 39! 5! ⋅ 34! = 39⋅38⋅37⋅36⋅35 5⋅4⋅3⋅2⋅1 = 575757.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 575757 3838380 ≈ 0.15, also ca. 15%.

Formel v. Bernoulli

Beispiel:

Eine Münze wird 53 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 26 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=53 und p=0.5.

P0.553 (X=26) = ( 53 26 ) 0.526 0.527 =0.10807684889525≈ 0.1081
(TI-Befehl: binompdf(53,0.5,26))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.8.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.8 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.8 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.8=0.2 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.02≈ 0 + 0.02 = 0.02
2≈ 0.08≈ 0.02 + 0.08 = 0.1
3≈ 0.17≈ 0.1 + 0.17 = 0.27
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 2) = 0.1 also noch klar unter der geforderten Wahrscheinlichkeit von 0.2 liegt, ist P(X ≤ 3) = 0.27 klar darüber.

Oder andersrum: P(X ≥ 3) = 1 - P(X ≤ 2) = 0.9 (die Summe der blauen Säulenhöhen von 3 bis 10) ist klar über der geforderten Wahrscheinlichkeit von 0.8, während P(X ≥ 4) = 1 - P(X ≤ 3) = 0.73 (die Summe der Säulenhöhen von 4 bis 10) klar darunter liegt.

Somit ist das gesuchte k = 3.

kumulierte Binomialverteilung

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, nicht mehr als 8 Glückskekse mit einer Peproni zu erwischen, wenn man 82 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=82 und p= 1 8 .

P 1 8 82 (X8) = P 1 8 82 (X=0) + P 1 8 82 (X=1) + P 1 8 82 (X=2) +... + P 1 8 82 (X=8) = 0.28923122375538 ≈ 0.2892
(TI-Befehl: binomcdf(82,1/8,8))

Binomialverteilung X>=k

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 68 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so 17 oder gar noch mehr Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=68 und p=0.25.

...
14
15
16
17
18
19
...

P0.2568 (X17) = 1 - P0.2568 (X16) = 0.5464
(TI-Befehl: 1-binomcdf(68,0.25,16))

Binomialverteilung X ∈ [l;k]

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 82% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 43 Versuchen mindestens 35 und weniger als 41 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=43 und p=0.82.

P0.8243 (35X40) =

...
32
33
34
35
36
37
38
39
40
41
42

P0.8243 (X40) - P0.8243 (X34) ≈ 0.9894 - 0.367 ≈ 0.6224
(TI-Befehl: binomcdf(43,0.82,40) - binomcdf(43,0.82,34))