Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 70%. Es wird 3 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass nur beim ersten Drehen der grüne Bereich erzielt wird.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,7, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,7 = 0,3. Da ja der Treffer genau im ersten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:

P = 0,7⋅0,30,3 = 0,7 · 0,3 2 ≈ 0.063 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 20 2 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 20 2 ) = 20! 2! ⋅ (20 - 2)! = 20! 2! ⋅ 18! = 20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 2⋅1 ⋅ 18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
18! = 18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 20 2 ) = 20⋅19 2⋅1

= 10⋅19 1 (gekürzt mit 2)

= 190

Binomialkoeffizient Anwendungen

Beispiel:

Eine Eisdiele bietet 10 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 4 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?

Lösung einblenden

Für die erste Stelle ist jede Eissorte möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 10987 = 5040 Möglichkeiten, die 10 Möglichkeiten (Eissorten) auf die 4 "Ziehungen" (Kugeln) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4321 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 5040 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 5040 24 = 210 Möglichkeiten für 4er-Gruppen, die aus 10 Elementen (Eissorten) gebildet werden.

Die hier durchgeführte Berechnung 10987 4321 könnte man mit 6! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

210 = 10987 4321 = 10987 6 5 4 3 2 1 4321 6 5 4 3 2 1 = 10! 4! ⋅ 6! = ( 10 4 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.

Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 21, die 22 und die 39 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 40 7 ) = 40! 7! ⋅ 33! = 40⋅39⋅38⋅37⋅36⋅35⋅34 7⋅6⋅5⋅4⋅3⋅2⋅1 = 18643560 verschiedene Möglichkeiten, die 7 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 7 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn drei der gezogenen Zahlen die 21, die 22 und die 39 sind, bzw. wie viele Möglichkeiten es gibt, 7 von 40 Zahlen anzukreuzen, wobei drei Kreuze sicher auf der der 21, der 22 und der 39 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 37 Zahlen (alle außer der 21, der 22 und der 39) zu setzen, also ( 37 4 ) = 37! 4! ⋅ 33! = 37⋅36⋅35⋅34 4⋅3⋅2⋅1 = 66045.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 66045 18643560 ≈ 0.0035, also ca. 0.35%.

Formel v. Bernoulli

Beispiel:

Eine Münze wird 54 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 30 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=54 und p=0.5.

P0.554 (X=30) = ( 54 30 ) 0.530 0.524 =0.077863247048918≈ 0.0779
(TI-Befehl: binompdf(54,0.5,30))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.4.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.01≈ 0 + 0.01 = 0.01
2≈ 0.03≈ 0.01 + 0.03 = 0.04
3≈ 0.08≈ 0.04 + 0.08 = 0.12
4≈ 0.15≈ 0.12 + 0.15 = 0.27
5≈ 0.21≈ 0.27 + 0.21 = 0.48
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 4) = 0.27 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 5) = 0.48 klar darüber.

Somit ist das gesuchte k = 5.

kumulierte Binomialverteilung

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 68 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so bis zu 22 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=68 und p=0.25.

P0.2568 (X22) = P0.2568 (X=0) + P0.2568 (X=1) + P0.2568 (X=2) +... + P0.2568 (X=22) = 0.93499441396444 ≈ 0.935
(TI-Befehl: binomcdf(68,0.25,22))

Binomialverteilung X>=k

Beispiel:

Ein Würfel wird 38 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 10 mal eine 6 (p=1/6) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=38 und p= 1 6 .

...
7
8
9
10
11
12
...

P 1 6 38 (X10) = 1 - P 1 6 38 (X9) = 0.089
(TI-Befehl: 1-binomcdf(38, 1 6 ,9))

Binomialverteilung X ∈ [l;k]

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, mehr als 12 und höchstens 15 Glückskekse mit einer Peproni zu erwischen, wenn man 92 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=92 und p=0.125.

P0.12592 (13X15) =

...
10
11
12
13
14
15
16
17
...

P0.12592 (X15) - P0.12592 (X12) ≈ 0.8931 - 0.637 ≈ 0.2561
(TI-Befehl: binomcdf(92,0.125,15) - binomcdf(92,0.125,12))