Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 40%. Es wird 3 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass dabei genau einmal in den grünen Bereich gedreht wird.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,4, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,4 = 0,6. Hier gibt es nun mehrere Möglichkeiten, wann der eine Treffer eintritt:

Treffer - NichtTreffer - NichtTreffer (also Treffer im 1-ten Versuch)
NichtTreffer - Treffer - NichtTreffer (also Treffer im 2-ten Versuch)
NichtTreffer - NichtTreffer - Treffer (also Treffer im 3-ten Versuch)

Bei jedem dieser 3 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = 0,4 · 0,6 2 .

Für die gesuchte Wahrscheinlichkeit aller 3 Fälle gilt somit P = 3 · 0,4 · 0,6 2 ≈ 0.432 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 25 1 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 25 1 ) = 25! 1! ⋅ (25 - 1)! = 25! 1! ⋅ 24! = 25⋅24⋅23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 1 ⋅ 24⋅23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
24! = 24⋅23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 25 1 ) = 25 1

= 25

Binomialkoeffizient Anwendungen

Beispiel:

Eine Mathelehrerin verlost unter den 8 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 5 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 5er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 87654 = 6720 Möglichkeiten, die 8 Möglichkeiten (SchülerInnen) auf die 5 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 54321 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 6720 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 6720 120 = 56 Möglichkeiten für 5er-Gruppen, die aus 8 Elementen (SchülerInnen) gebildet werden.

Die hier durchgeführte Berechnung 87654 54321 könnte man mit 3! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

56 = 87654 54321 = 87654 3 2 1 54321 3 2 1 = 8! 5! ⋅ 3! = ( 8 5 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.

Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 2, die 21 und die 31 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 40 7 ) = 40! 7! ⋅ 33! = 40⋅39⋅38⋅37⋅36⋅35⋅34 7⋅6⋅5⋅4⋅3⋅2⋅1 = 18643560 verschiedene Möglichkeiten, die 7 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 7 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn drei der gezogenen Zahlen die 2, die 21 und die 31 sind, bzw. wie viele Möglichkeiten es gibt, 7 von 40 Zahlen anzukreuzen, wobei drei Kreuze sicher auf der der 2, der 21 und der 31 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 37 Zahlen (alle außer der 2, der 21 und der 31) zu setzen, also ( 37 4 ) = 37! 4! ⋅ 33! = 37⋅36⋅35⋅34 4⋅3⋅2⋅1 = 66045.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 66045 18643560 ≈ 0.0035, also ca. 0.35%.

Formel v. Bernoulli

Beispiel:

Ein Würfel wird 75 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 19 mal eine 6 (p=1/6) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=75 und p= 1 6 .

P 1 6 75 (X=19) = ( 75 19 ) ( 1 6 )19 ( 5 6 )56 =0.017323068742161≈ 0.0173
(TI-Befehl: binompdf(75,1/6,19))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.5.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.03≈ 0 + 0.03 = 0.03
1≈ 0.13≈ 0.03 + 0.13 = 0.16
2≈ 0.23≈ 0.16 + 0.23 = 0.39
3≈ 0.26≈ 0.39 + 0.26 = 0.65
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 2) = 0.39 also noch klar unter der geforderten Wahrscheinlichkeit von 0.5 liegt, ist P(X ≤ 3) = 0.65 klar darüber.

Somit ist das gesuchte k = 3.

kumulierte Binomialverteilung

Beispiel:

Eine Münze wird 44 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass weniger als 21 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=44 und p=0.5.

P0.544 (X<21) = P0.544 (X20) = P0.544 (X=0) + P0.544 (X=1) + P0.544 (X=2) +... + P0.544 (X=20) = 0.32579391360446 ≈ 0.3258
(TI-Befehl: binomcdf(44,0.5,20))

Binomialverteilung X>=k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,2. Wie groß ist die Wahrscheinlichkeit bei 70 Versuchen mindestens 9 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=70 und p=0.2.

...
6
7
8
9
10
11
...

P0.270 (X9) = 1 - P0.270 (X8) = 0.9563
(TI-Befehl: 1-binomcdf(70,0.2,8))

Binomialverteilung X ∈ [l;k]

Beispiel:

Ein Zufallsexperiment wird 72 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p=0,4.Wie groß ist dabei die Wahrscheinlichkeit, mindestens 29, aber höchstens 32 Treffer zu erzielen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=72 und p=0.4.

P0.472 (29X32) =

...
26
27
28
29
30
31
32
33
34
...

P0.472 (X32) - P0.472 (X28) ≈ 0.8137 - 0.4745 ≈ 0.3392
(TI-Befehl: binomcdf(72,0.4,32) - binomcdf(72,0.4,28))