Aufgabenbeispiele von Bruch <-> Dezimalzahl

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Dezimalzahl als Bruch schreiben

Beispiel:

Gib die Zahl 5,636 als Bruch mit ganzen Zahlen in Zähler und Nenner an.

Lösung einblenden

Da unsere Zahl 5,636 nach dem Komma 3 Stellen hat, verschieben wir das Komma im Zähler um 3 Stellen nach links und wählen dafür als Nenner 1000, also:

5,636 = 5636 1000

Bruch als Dezimalzahl schreiben

Beispiel:

Schreibe den Bruch - 420 250 als Dezimalzahl.

Lösung einblenden

Wir erweitern den Bruch mit 4 damit wir im Nenner eine Zehner-Potenz haben (eine 1 und lauter Nullen).

- 420 250 = - 1680 1000

Jetzt können wir einfach das Komma im Zähler um 3 Stellen nach links verschieben, um den Nenner loszuwerden:

- 1680 1000 = -1,68 1 = -1,68

Dezimalzahl am Zahlenstrahl

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gib die markierten Zahl an der Zahlengeraden als Bruch und als Dezimalzahl an:

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen -1 und 0 und erkennen, dass diese Strichchen eine Einheit in 4 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 4 hat.

Man könnte jetzt einfach die Strichchen von der 0 bis zur Markierung zählen; schneller geht's aber, wenn man die ganzen Einheiten als 4 4 zählt. In beiden Fällen erhält man als Zähler 5, weil die Markierung eben auf dem 5-ten Strichchen liegt.

Da die Markierung links von der 0 liegt, braucht der Bruch noch ein negatives Vorzeichen.

Der gesuchte Bruch ist also: - 5 4

Jetzt müssen wir eben noch den Bruch auf den Nenner 100 erweitern, um ihn in Dezimalschreibweise angeben zu können:

- 5 4 = - 125 100 = -1,25

Dezimalzahlen sortieren

Beispiel:

Sortiere die drei Dezimalzahlen 2; 1,8 und 1,7 von klein nach groß.

Lösung einblenden

Da die Zahlen 1 Stelle oder weniger hinter dem Komma haben, können wir alle Dezimalzahlen auch als Brüch mit 10 im Nenner schreiben:

2 = 20 10

1,8 = 18 10

1,7 = 17 10

Jetzt können wir einfach die Zähler sortieren:

17 < 18 < 20

Somit gilt für die gegebenen Dezimalzahlen:

1,7 < 1,8 < 2

Mitte finden

Beispiel:

Welche Zahl liegt in der Mitte von 0,65 und 0,652 ?

Lösung einblenden

Wir skizzieren am besten einen Zahlenstrahl und skalieren diesen mit Strichen immer nach 0.001, weil ja die beiden Zahlen bis zu 3 Stellen hintern dem Komma haben.

So erkennen wir dass das Strichchen genau in der Mitte zwischen 0,65 und 0,652 bei 0,651 sein muss.

Die Mitte von 0,65 und 0,652 ist also: 0,651

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gewichte (Dezimalzahlen als Maßzahlen)

Beispiel:

Wandle die Gewichtsangabe in die angegebene Einheit um: 34,1 mg = ..... g

Lösung einblenden
Die korrekte Antwort lautet:
34,1 mg = 0,0341 g

Stellenwerttafel

Beispiel:

Schreibe in der Dezimalschreibweise:

Lösung einblenden

Wir haben ja 0 Hunderter + 3 Zehner + 0 Einer, 0 zehntel,5 hundertstel und 0 tausendstel.

Also gilt für unser Dezimalzahl 0⋅100 + 3⋅10 + 0⋅1 + 0⋅ 1 10 + 5⋅ 1 100 + 0⋅ 1 1000
= 0⋅100 + 3⋅10 + 0⋅1 + 0⋅0,1 + 5⋅0,01 + 0⋅0,001
= 0 + 30 + 0 + 0 + 0.05 + 0
=30,05

Bruch und Dezimalzahl vergleichen

Beispiel:

Entscheide in allen drei Zeilen welcher Wert größer ist, bzw. ob beide Werte gleich groß sind:

Lösung einblenden

Um - 7 9 und -0.7 besser vergleichen zu können, wandeln wir -0.7 in einen Bruch um: -0,7 = - 7 10 = - 7 10

Vergleich von - 7 9 und -0.7= - 7 10

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Zähler haben. In diesem Fall ist derjenige Bruch (betragsmäßig) größer, der den kleineren Nenner hat (Schließlich bleibt mehr von einer Menge übrig, wenn man diese durch weniger Leute teilt als wenn man sie durch mehr teilt). Somit gilt für die positiven Brüche: 7 9 > 7 10
Für die negativen Werte gilt also - 7 9 < - 7 10 = -0.7 (Bei positiven Werten ist die größere Zahl ja immer weiter rechts auf dem Zahlenstrahl. Weil das negative Vorzeichen die Position aber an der 0 spiegelt, landet der betragsmäßig größere Wert dann weiter links)


Vergleich von - 8 11 und - 7 11

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch (betragsmäßig) größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 11 teilt, als bei der kleineren, wenn man diese durch 11 teilt). Somit gilt für die positiven Brüche: 8 11 > 7 11
Für die negativen Werte gilt also - 8 11 < - 7 11 (Bei positiven Werten ist die größere Zahl ja immer weiter rechts auf dem Zahlenstrahl. Weil das negative Vorzeichen die Position aber an der 0 spiegelt, landet der betragsmäßig größere Wert dann weiter links)


Vergleich von 2.2 und 2

Wenn man einfach das Komma bei beiden Zahlen um 1 Stelle nach links verschiebt, erkennt man, dass 22 > 20 gilt.

Es gilt hier also 2,2 > 2