Aufgabenbeispiele von Bruch <-> Dezimalzahl

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Dezimalzahl als Bruch schreiben

Beispiel:

Gib die Zahl 939,5 als Bruch mit ganzen Zahlen in Zähler und Nenner an.

Lösung einblenden

Da unsere Zahl 939,5 nach dem Komma 1 Stelle hat, verschieben wir das Komma im Zähler um 1 Stelle nach links und wählen dafür als Nenner 10, also:

939,5 = 9395 10

Bruch als Dezimalzahl schreiben

Beispiel:

Schreibe den Bruch 1 2 als Dezimalzahl.

Lösung einblenden

Wir erweitern den Bruch mit 5 damit wir im Nenner eine Zehner-Potenz haben (eine 1 und lauter Nullen).

1 2 = 5 10

Jetzt können wir einfach das Komma im Zähler um 1 Stellen nach links verschieben, um den Nenner loszuwerden:

5 10 = 0,5 1 = 0,5

Dezimalzahl am Zahlenstrahl

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gib die markierten Zahl an der Zahlengeraden als Bruch und als Dezimalzahl an:

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen -1 und 0 und erkennen, dass diese Strichchen eine Einheit in 2 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 2 hat.

Man könnte jetzt einfach die Strichchen von der 0 bis zur Markierung zählen; schneller geht's aber, wenn man die ganzen Einheiten als 2 2 zählt. In beiden Fällen erhält man als Zähler 7, weil die Markierung eben auf dem 7-ten Strichchen liegt.

Da die Markierung links von der 0 liegt, braucht der Bruch noch ein negatives Vorzeichen.

Der gesuchte Bruch ist also: - 7 2

Jetzt müssen wir eben noch den Bruch auf den Nenner 10 erweitern, um ihn in Dezimalschreibweise angeben zu können:

- 7 2 = - 35 10 = -3,5

Dezimalzahlen sortieren

Beispiel:

Sortiere die drei Dezimalzahlen 282,6; 294,4 und 294 von klein nach groß.

Lösung einblenden

Da die Zahlen 1 Stelle oder weniger hinter dem Komma haben, können wir alle Dezimalzahlen auch als Brüch mit 10 im Nenner schreiben:

282,6 = 2826 10

294,4 = 2944 10

294 = 2940 10

Jetzt können wir einfach die Zähler sortieren:

2826 < 2940 < 2944

Somit gilt für die gegebenen Dezimalzahlen:

282,6 < 294 < 294,4

Mitte finden

Beispiel:

Welche Zahl liegt in der Mitte von 0,5 und 0,8 ?

Lösung einblenden

Wir skizzieren am besten einen Zahlenstrahl und skalieren diesen mit Strichen immer nach 0.1, weil ja die beiden Zahlen bis zu 1 Stelle hintern dem Komma haben.

So erkennen wir, dass die Mitte zwischen 0,5 und 0,8 gerade in der Mitte zwischen den Strichchen von 0,6 und 0.7 liegen muss.

Diese Mitte liegt zwischen 6 10 = 60 100 und 7 10 = 70 100 , also bei 65 100 .

Die Mitte von 0,5 und 0,8 ist also: 0,65

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gewichte (Dezimalzahlen als Maßzahlen)

Beispiel:

Wandle die Gewichtsangabe in die angegebene Einheit um: 187 g = ..... mg

Lösung einblenden
Die korrekte Antwort lautet:
187 g = 187000 mg

Stellenwerttafel

Beispiel:

Schreibe in der Dezimalschreibweise:

Lösung einblenden

Wir haben ja 0 Hunderter + 1 Zehner + 2 Einer, 2 zehntel,0 hundertstel und 9 tausendstel.

Also gilt für unser Dezimalzahl 0⋅100 + 1⋅10 + 2⋅1 + 2⋅ 1 10 + 0⋅ 1 100 + 9⋅ 1 1000
= 0⋅100 + 1⋅10 + 2⋅1 + 2⋅0,1 + 0⋅0,01 + 9⋅0,001
= 0 + 10 + 2 + 0.2 + 0 + 0.009
=12,209

Bruch und Dezimalzahl vergleichen

Beispiel:

Entscheide in allen drei Zeilen welcher Wert größer ist, bzw. ob beide Werte gleich groß sind:

Lösung einblenden

Vergleich von - 7 9 und - 7 8

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Zähler haben. In diesem Fall ist derjenige Bruch (betragsmäßig) größer, der den kleineren Nenner hat (Schließlich bleibt mehr von einer Menge übrig, wenn man diese durch weniger Leute teilt als wenn man sie durch mehr teilt). Somit gilt für die positiven Brüche: 7 9 < 7 8
Für die negativen Werte gilt also - 7 9 > - 7 8 (Bei positiven Werten ist die größere Zahl ja immer weiter rechts auf dem Zahlenstrahl. Weil das negative Vorzeichen die Position aber an der 0 spiegelt, landet der betragsmäßig größere Wert dann weiter links)


Vergleich von - 17 19 und - 18 19

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch (betragsmäßig) größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 19 teilt, als bei der kleineren, wenn man diese durch 19 teilt). Somit gilt für die positiven Brüche: 17 19 < 18 19
Für die negativen Werte gilt also - 17 19 > - 18 19 (Bei positiven Werten ist die größere Zahl ja immer weiter rechts auf dem Zahlenstrahl. Weil das negative Vorzeichen die Position aber an der 0 spiegelt, landet der betragsmäßig größere Wert dann weiter links)


Vergleich von 9 11 und 17 22

Da hier die Zähler und Nenner der beiden Brüche verschieden sind, bringen wir am besten die beiden Brüche auf den gleichen Nenner um sie besser vergleichen zu können:

9 11 = 18 22

Also gilt: 9 11 = 18 22 > 17 22 .

Es gilt hier also also 9 11 > 17 22