Aufgabenbeispiele von Bruch <-> Dezimalzahl

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Dezimalzahl als Bruch schreiben

Beispiel:

Gib die Zahl 0,575 als Bruch mit ganzen Zahlen in Zähler und Nenner an.

Lösung einblenden

Da unsere Zahl 0,575 nach dem Komma 3 Stellen hat, verschieben wir das Komma im Zähler um 3 Stellen nach links und wählen dafür als Nenner 1000, also:

0,575 = 575 1000

Bruch als Dezimalzahl schreiben

Beispiel:

Schreibe den Bruch - 1 2 als Dezimalzahl.

Lösung einblenden

Wir erweitern den Bruch mit 5 damit wir im Nenner eine Zehner-Potenz haben (eine 1 und lauter Nullen).

- 1 2 = - 5 10

Jetzt können wir einfach das Komma im Zähler um 1 Stellen nach links verschieben, um den Nenner loszuwerden:

- 5 10 = -0,5 1 = -0,5

Dezimalzahl am Zahlenstrahl

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gib die markierten Zahl an der Zahlengeraden als Bruch und als Dezimalzahl an:

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen -1 und 0 und erkennen, dass diese Strichchen eine Einheit in 5 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 5 hat.

Man könnte jetzt einfach die Strichchen von der 0 bis zur Markierung zählen; schneller geht's aber, wenn man die ganzen Einheiten als 5 5 zählt. In beiden Fällen erhält man als Zähler 6, weil die Markierung eben auf dem 6-ten Strichchen liegt.

Da die Markierung links von der 0 liegt, braucht der Bruch noch ein negatives Vorzeichen.

Der gesuchte Bruch ist also: - 6 5

Jetzt müssen wir eben noch den Bruch auf den Nenner 10 erweitern, um ihn in Dezimalschreibweise angeben zu können:

- 6 5 = - 12 10 = -1,2

Dezimalzahlen sortieren

Beispiel:

Sortiere die drei Dezimalzahlen 3,68; 3,5 und 3,7 von klein nach groß.

Lösung einblenden

Da die Zahlen 2 Stellen oder weniger hinter dem Komma haben, können wir alle Dezimalzahlen auch als Brüch mit 100 im Nenner schreiben:

3,68 = 368 100

3,5 = 350 100

3,7 = 370 100

Jetzt können wir einfach die Zähler sortieren:

350 < 368 < 370

Somit gilt für die gegebenen Dezimalzahlen:

3,5 < 3,68 < 3,7

Mitte finden

Beispiel:

Welche Zahl liegt in der Mitte von 0,76 und 0,764 ?

Lösung einblenden

Wir skizzieren am besten einen Zahlenstrahl und skalieren diesen mit Strichen immer nach 0.001, weil ja die beiden Zahlen bis zu 3 Stellen hintern dem Komma haben.

So erkennen wir dass das Strichchen genau in der Mitte zwischen 0,76 und 0,764 bei 0,762 sein muss.

Die Mitte von 0,76 und 0,764 ist also: 0,762

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Flächen (mit Komma)

Beispiel:

Wandle die Flächenangabe in die angegebene Einheit um: 0,0533 ha = ..... a

Lösung einblenden
Die korrekte Antwort lautet:
0,0533 ha = 5,33 a

Stellenwerttafel

Beispiel:

Trage die Dezimalzahl richtig in die Stellenwerttafel ein:

Lösung einblenden

Vor dem Komma steht ja 7 = 0⋅100 + 0⋅10 + 7⋅1.

Somit haben wir 0 Hunderter, 0 Zehner und 7 Einer.

Nach dem Komma steht ja 0.02 = 0⋅0,1 + 2⋅0,01 + 0⋅0,001 = 0⋅ 1 10 + 2⋅ 1 100 + 0⋅ 1 1000 .

Somit haben wir 0 zehntel, 2 hundertstel und 0 tausendstel.

DezimalzahlGanzeDezimale
 HunderterZehnerEinerzehntelhundertsteltausendstel
7,0200 70 20


Bruch und Dezimalzahl vergleichen

Beispiel:

Entscheide in allen drei Zeilen welcher Wert größer ist, bzw. ob beide Werte gleich groß sind:

Lösung einblenden

Um 3 5 und 0.5 besser vergleichen zu können, wandeln wir 0.5 in einen Bruch um: 0,5 = 5 10 = 1 2

Vergleich von 3 5 und 0.5= 1 2

Da hier die Zähler und Nenner der beiden Brüche verschieden sind, bringen wir am besten die beiden Brüche auf den gleichen Nenner um sie besser vergleichen zu können:

3 5 = 6 10

1 2 = 5 10

Also gilt: 3 5 = 6 10 > 5 10 = 1 2 .

Es gilt hier also also 3 5 > 1 2 = 0.5


Vergleich von 26 17 und 25 17

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch (betragsmäßig) größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 17 teilt, als bei der kleineren, wenn man diese durch 17 teilt). Es gilt hier also also 26 17 > 25 17


Vergleich von 1.4 und 1.2

Wenn man einfach das Komma bei beiden Zahlen um 1 Stelle nach links verschiebt, erkennt man, dass 14 > 12 gilt.

Es gilt hier also 1,4 > 1,2