Aufgabenbeispiele von Bruch <-> Dezimalzahl

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Dezimalzahl als Bruch schreiben

Beispiel:

Gib die Zahl 3,12 als Bruch mit ganzen Zahlen in Zähler und Nenner an.

Lösung einblenden

Da unsere Zahl 3,12 nach dem Komma 2 Stellen hat, verschieben wir das Komma im Zähler um 2 Stellen nach links und wählen dafür als Nenner 100, also:

3,12 = 312 100

Bruch als Dezimalzahl schreiben

Beispiel:

Schreibe den Bruch 5 10 als Dezimalzahl.

Lösung einblenden

Wir können einfach das Komma im Zähler um 1 Stellen nach links verschieben, um den Nenner loszuwerden:

5 10 = 0,5 1 = 0,5

Dezimalzahl am Zahlenstrahl

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gib die markierten Zahl an der Zahlengeraden als Bruch und als Dezimalzahl an:

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen 0 und 1 und erkennen, dass diese Strichchen eine Einheit in 5 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 5 hat.

Das die Markierung auf dem 4-ten Strichchen liegt, muss im Zähler des gesuchten Bruchs die Zahl 4 stehen.

Der gesuchte Bruch ist also: 4 5

Jetzt müssen wir eben noch den Bruch auf den Nenner 10 erweitern, um ihn in Dezimalschreibweise angeben zu können:

4 5 = 8 10 = 0,8

Dezimalzahlen sortieren

Beispiel:

Sortiere die drei Dezimalzahlen 3,67; 3,7 und 3,82 von klein nach groß.

Lösung einblenden

Da die Zahlen 2 Stellen oder weniger hinter dem Komma haben, können wir alle Dezimalzahlen auch als Brüch mit 100 im Nenner schreiben:

3,67 = 367 100

3,7 = 370 100

3,82 = 382 100

Jetzt können wir einfach die Zähler sortieren:

367 < 370 < 382

Somit gilt für die gegebenen Dezimalzahlen:

3,67 < 3,7 < 3,82

Mitte finden

Beispiel:

Welche Zahl liegt in der Mitte von 0,49 und 0,496 ?

Lösung einblenden

Wir skizzieren am besten einen Zahlenstrahl und skalieren diesen mit Strichen immer nach 0.001, weil ja die beiden Zahlen bis zu 3 Stellen hintern dem Komma haben.

So erkennen wir dass das Strichchen genau in der Mitte zwischen 0,49 und 0,496 bei 0,493 sein muss.

Die Mitte von 0,49 und 0,496 ist also: 0,493

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Längen (Maßzahlen mit Komma)

Beispiel:

Wandle die Längenangabe in die angegebene Einheit um: 330 km = ..... mm

Lösung einblenden
Die korrekte Antwort lautet:
330 km = 330000000 mm

Stellenwerttafel

Beispiel:

Trage die Dezimalzahl richtig in die Stellenwerttafel ein:

Lösung einblenden

Vor dem Komma steht ja 139 = 1⋅100 + 3⋅10 + 9⋅1.

Somit haben wir 1 Hunderter, 3 Zehner und 9 Einer.

Nach dem Komma steht ja 0.45 = 4⋅0,1 + 5⋅0,01 + 0⋅0,001 = 4⋅ 1 10 + 5⋅ 1 100 + 0⋅ 1 1000 .

Somit haben wir 4 zehntel, 5 hundertstel und 0 tausendstel.

DezimalzahlGanzeDezimale
 HunderterZehnerEinerzehntelhundertsteltausendstel
139,4513 94 50


Bruch und Dezimalzahl vergleichen

Beispiel:

Entscheide in allen drei Zeilen welcher Wert größer ist, bzw. ob beide Werte gleich groß sind:

Lösung einblenden

Vergleich von -0.6 und -0.8

Wenn man einfach das Komma bei beiden Zahlen um 1 Stelle nach links verschiebt, erkennt man, dass -6 > -8 gilt.

Es gilt hier also -0,6 > -0,8

Um 1.6 und 2 besser vergleichen zu können, wandeln wir 1.6 in einen Bruch um: 1,6 = 16 10 = 8 5

Vergleich von 1.6= 8 5 und 2

Da hier die Zähler und Nenner der beiden Brüche verschieden sind, bringen wir am besten die beiden Brüche auf den gleichen Nenner um sie besser vergleichen zu können:

2 = 10 5

Also gilt: 8 5 < 10 5 = 2.

Es gilt hier also also 1.6= 8 5 < 2


Um - 5 3 und -2 besser vergleichen zu können, wandeln wir -2 in einen Bruch um: -2 = -2 = -2

Vergleich von - 5 3 und -2=-2

Da hier die Zähler und Nenner der beiden Brüche verschieden sind, bringen wir am besten die beiden Brüche auf den gleichen Nenner um sie besser vergleichen zu können:

2 = 6 3

Also gilt: 5 3 > 6 3 = 2.

Somit gilt für die positiven Brüche: 5 3 < 2
Für die negativen Werte gilt also - 5 3 > -2= -2 (Bei positiven Werten ist die größere Zahl ja immer weiter rechts auf dem Zahlenstrahl. Weil das negative Vorzeichen die Position aber an der 0 spiegelt, landet der betragsmäßig größere Wert dann weiter links)