Aufgabenbeispiele von Bruchverständnis

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bruch erkennen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Gib den im Schaubild eingefärbten Bruch an.

Lösung einblenden

Wir können insgesamt 4 Sektoren erkennen.

Davon sind 2 eingefärbt.

Es sind also 2 von 4 eingefärbt, somit ist der Bruch: 2 4

Bruch in natürliche Zahl umrechnen

Beispiel:

Gib 1 2 kg ohne Bruch in g an.

Lösung einblenden

1 kg sind ja 1000 g.

Also sind ein 1 2 kg doch gerade 1000 g : 2 = 500 g.

Anteile von ganzen Dingen

Beispiel:

Wie viel sind 1 4 von 32 Kartoffeln ?

Lösung einblenden

Ein 1 4 von 32 Kartoffeln sind 32 : 4 = 8 Kartoffeln.

Anteile von Zehnereinheiten

Beispiel:

Wie viel sind 1 5 von 1 kg ?

Lösung einblenden

Zuerst rechnen wir 1kg in 1000 g um.

Ein 1 5 von 1000 g sind 1000 g : 5 = 200 g.

Anteile von Zeiteinheiten

Beispiel:

Wie viel sind 1 4 von 1 d(Tage) ?

Lösung einblenden

Zuerst rechnen wir 1d(Tage) in 24 h um.

Ein 1 4 von 24 h sind 24 h : 4 = 6 h.

Erweitern einfach

Beispiel:

Erweitere den Bruch 3 7 mit 8

Lösung einblenden

Beim Erweitern multiplizieren wir einfach Zähler und Nenner mit der gleichen Zahl 8:

3 7 = 3 ⋅ 8 7 ⋅ 8 = 24 56

Kürzen (einzel)

Beispiel:

Kürze vollständig: 33 21

Lösung einblenden

Wir probieren alle Primzahlen durch, ob sie vielleicht beide Teiler von Zähler (33) und Nenner (21) sind:

33 21 = k(3) 11 7

33 21 = 11 7

Erweitern

Beispiel:

Erweitere den Bruch 11 8 auf den Nenner 24

Lösung einblenden

Der Bruch soll so erweitert werden, dass aus dem alten Nenner 8 nachher der neue Nenner 24 wird.

Wir müssen also mit 24 : 8 = 3 erweitern.

11 8 = 11 ⋅ 3 8 ⋅ 3 = 33 24

Darstellungwechsel Bruch - Prozent

Beispiel:

Gib 65 % als gekürzten Bruch an.

Lösung einblenden

65% bedeutet ja einfach 65 100 . Jetzt müssen wir nur noch kürzen:

65% = 65 100 = 13 20

Bruch am Zahlenstrahl

Beispiel:

Gib den markierten Bruch an der Zahlengeraden an:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen 0 und 1 und erkennen, dass diese Strichchen eine Einheit in 5 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 5 hat.

Man könnte jetzt einfach die Strichchen von der 0 bis zur Markierung zählen; schneller geht's aber, wenn man die ganzen Einheiten als 5 5 zählt. In beiden Fällen erhält man als Zähler 9, weil die Markierung eben auf dem 9-ten Strichchen liegt.

Der gesuchte Bruch ist also: 9 5

gemischter Bruch am Zahlenstrahl

Beispiel:

Gib den markierten Bruch an der Zahlengeraden als vollständig gekürzten gemeinen (gewöhnlichen) Bruch und als gemischten Bruch an:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen -1 und -2 und erkennen, dass diese Strichchen eine Einheit in 2 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 2 hat.

Da die Markierung auf dem 1-ten Strichchen zwischen -1 und -2 liegt, muss der gemischte Bruch -1 1 2 sein.

Der gesuchte Bruch ist also: -1 1 2 = - 2 2 - 1 2 = - 3 2

Brüche vergleichen

Beispiel:

Entscheide in allen drei Zeilen welcher Bruch größer ist, bzw. ob die beiden Brüche gleich groß sind:

Lösung einblenden

Vergleich von 8 7 und 4 3

Wenn man genau hinschaut, erkennt man, dass der Zähler des 1. ten Bruch doppelt so groß ist wie der des 2. ten. Wir erweitern deswegen 2-ten Bruch mit 2: 4 3 = 8 6

Jetzt kann man gut erkennen, dass 8 7 < 8 6 = 4 3 , weil der größere Nenner den Bruch kleiner macht (Schließlich bleibt mehr von einer Menge übrig, wenn man diese durch weniger Leute teilt als wenn man sie durch mehr teilt). Es gilt hier also 8 7 < 4 3

Vergleich von 18 13 und 19 13

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 13 teilt, als bei der kleineren, wenn man diese durch 13 teilt). Es gilt hier also 18 13 < 19 13

Vergleich von 5 3 und 2

Da hier die Zähler und Nenner der beiden Brüche verschieden sind, bringen wir am besten die beiden Brüche auf den gleichen Nenner um sie besser vergleichen zu können:

2 = 6 3

Also gilt: 5 3 < 6 3 = 2.

Es gilt hier also 5 3 < 2

Mitte finden (von 2 Brüchen)

Beispiel:

Welcher Bruch liegt in der Mitte von 15 11 und 16 11 ?

Lösung einblenden

Da die Nenner gleich sind, genügt es die Mitte zwischen den Zählern der beiden Brüche zu finden.

Leider gibt es keine ganze Zahl in der Mitte zwischen 15 und 16.

Wenn wir aber beide Brüche mit 2 erweitern, bleibt ja einerseits der Wert der beiden Brüche gleich, andereseits verdoppeln sich aber die Zähler der beiden Brüche, so dass auch der Abstand zwischen diesen verdoppelt wird:

Es gilt: 15 11 = 30 22 und 16 11 = 32 22

Jetzt finden wir leicht die Mitte zwischen 30 und 32, nämlich 31, somit ist also 31 22 genau in der Mitte zwischen 15 11 = 30 22 und 16 11 = 32 22 .

Mitte finden (von 2 versch. Brüchen)

Beispiel:

Welcher Bruch liegt in der Mitte von 1 4 und 1 ?

Lösung einblenden

Um die Mitte zwischen zwei Brüchen zu finden, müssen wir die beiden Brüche erst einmal auf den gleichen Nenner bringen.

Dazu erweitern wir hier einfach jeweils mit dem Nenner des anderen Bruchs:

1 4 = 1 4 und 1 = 4 4

Leider gibt es keine ganze Zahl in der Mitte zwischen 1 und 4.

Wenn wir aber beide Brüche noch mit 2 erweitern, verdoppeln sich die Zähler der beiden Brüche, so dass auch der Abstand zwischen diesen verdoppelt wird:

Es gilt: 1 4 = 2 8 und 4 4 = 8 8

Jetzt finden wir leicht die Mitte zwischen 2 und 8, nämlich 2 + 8 2 = 5, somit ist also 5 8 genau in der Mitte zwischen 1 4 = 2 8 und 1 = 8 8 .

3 Brüche sortieren

Beispiel:

Sortiere die drei Brüche - 14 3 , - 25 6 und - 22 5 von klein nach groß.

Lösung einblenden

Als erstes formen wir die Brüche um, so dass wir alle in gemischter Schreibweise vergleichen können:

- 14 3 = 12 + 2 3 = 12 3 + 2 3 = 4 + 2 3 = -4 2 3

- 25 6 = 24 + 1 6 = 24 6 + 1 6 = 4 + 1 6 = -4 1 6

- 22 5 = 20 + 2 5 = 20 5 + 2 5 = 4 + 2 5 = -4 2 5

Man erkennt, dass alle drei Brüche zwischen -5 und -4 liegen. -4 2 3 ist dabei aber die betragsmäßig größte Zahl, also wegen des negativem Vorzeichens kleinste Zahl, weil sie als einzige größer als -4 1 2 ist. Das erkennt man daran, dass bei 1 3 der Zähler über der Hälfte vom Nenner ist.

Bleibt noch zu entscheiden, ob -4 1 6 oder -4 2 5 größer ist.
Da ja beide die -4 vorne haben, müssen wir dazu nur die Brüche - 1 6 und - 2 5 betrachten.

Wenn man die Brüche als Anteile sieht, kann man erkennen, dass - 1 6 die betragsmäßig kleinere Zahl sein muss. Wegen des negativen Vorzeichens ist dann aber die betragsmäßig kleinere Zahl - 1 6 die größere von beiden.

Oder man erweitert jeweils mit dem anderen Nenner: - 1 6 = - 5 30 < - 12 30 = - 2 5

1 6
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

2 5
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Somit ergibt sich folgende Reihenfolge:

-4 2 3 < -4 2 5 < -4 1 6 , also

- 14 3 < - 22 5 < - 25 6

Umwandlung echter - gemischter Bruch

Beispiel:

Gib den unechten Bruch 16 3 als gemischten Bruch an.

(Der Bruch soll in gekürzter Form bleiben.)

Lösung einblenden

Wir schauen zuerst, wie oft der Nenner in den Zähler passt und was dann noch als Rest übrig bleibt:

16 = 15 + 1 = 5⋅3 + 1

also gilt:

16 3 = 5⋅3 + 1 3 = 5⋅3 3 + 1 3 = 5 + 1 3

Somit gilt: 16 3 = 5 1 3