Aufgabenbeispiele von Bruchverständnis

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bruch erkennen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Gib den im Schaubild eingefärbten Bruch an.

Lösung einblenden

Wir können insgesamt 6 Quadrate erkennen.

Davon sind 2 eingefärbt.

Es sind also 2 von 6 eingefärbt, somit ist der Bruch: 2 6

Bruch in natürliche Zahl umrechnen

Beispiel:

Gib 1 2 h ohne Bruch in min an.

Lösung einblenden

1 h sind ja 60 min.

Also sind eine 1 2 h doch gerade 60 min : 2 = 30 min.

Anteile von ganzen Dingen

Beispiel:

Wie viel sind 1 2 von 4 Birnen ?

Lösung einblenden

Ein 1 2 von 4 Birnen sind 4 : 2 = 2 Birnen.

Anteile von Zehnereinheiten

Beispiel:

Wie viel sind 1 5 von 1 m² ?

Lösung einblenden

Zuerst rechnen wir 1m² in 100 dm² um.

Ein 1 5 von 100 dm² sind 100 dm² : 5 = 20 dm².

Anteile von Zeiteinheiten

Beispiel:

Wie viel sind 2 3 von 1 min ?

Lösung einblenden

Zuerst rechnen wir 1min in 60 s um.

Ein 1 3 von 60 s sind 60 s : 3 = 20 s.

2 3 von 60 s sind also 2 ⋅ 20 s = 40 s.

Erweitern einfach

Beispiel:

Erweitere den Bruch 11 8 mit 2

Lösung einblenden

Beim Erweitern multiplizieren wir einfach Zähler und Nenner mit der gleichen Zahl 2:

11 8 = 11 ⋅ 2 8 ⋅ 2 = 22 16

Kürzen (einzel)

Beispiel:

Kürze vollständig: 27 45

Lösung einblenden

Wir probieren alle Primzahlen durch, ob sie vielleicht beide Teiler von Zähler (27) und Nenner (45) sind:

27 45 = k(3) 9 15 = k(3) 3 5

27 45 = 3 5

(natürlich hätte man auch gleich auf einmal mit 9 kürzen können).

Erweitern

Beispiel:

Erweitere den Bruch 4 3 auf den Nenner 9

Lösung einblenden

Der Bruch soll so erweitert werden, dass aus dem alten Nenner 3 nachher der neue Nenner 9 wird.

Wir müssen also mit 9 : 3 = 3 erweitern.

4 3 = 4 ⋅ 3 3 ⋅ 3 = 12 9

Darstellungwechsel Bruch - Prozent

Beispiel:

Gib 13 20 als Prozentzahl an.

Lösung einblenden

Um einen Bruch als Prozentzahl anzugeben, müssen wir den Nenner des Bruchs durch Erweitern auf 100 bringen:

13 20 = 65 100 = 65%

Bruch am Zahlenstrahl

Beispiel:

Gib den markierten Bruch an der Zahlengeraden an:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen -1 und 0 und erkennen, dass diese Strichchen eine Einheit in 6 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 6 hat.

Man könnte jetzt einfach die Strichchen von der 0 bis zur Markierung zählen; schneller geht's aber, wenn man die ganzen Einheiten als 6 6 zählt. In beiden Fällen erhält man als Zähler 7, weil die Markierung eben auf dem 7-ten Strichchen liegt.

Da die Markierung links von der 0 liegt, braucht der Bruch noch ein negatives Vorzeichen.

Der gesuchte Bruch ist also: - 7 6

gemischter Bruch am Zahlenstrahl

Beispiel:

Gib den markierten Bruch an der Zahlengeraden als vollständig gekürzten gemeinen (gewöhnlichen) Bruch und als gemischten Bruch an:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen 1 und 2 und erkennen, dass diese Strichchen eine Einheit in 5 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 5 hat.

Da die Markierung auf dem 4-ten Strichchen zwischen 1 und 2 liegt, muss der gemischte Bruch 1 4 5 sein.

Der gesuchte Bruch ist also: 1 4 5 = 5 5 + 4 5 = 9 5

Brüche vergleichen

Beispiel:

Entscheide in allen drei Zeilen welcher Bruch größer ist, bzw. ob die beiden Brüche gleich groß sind:

Lösung einblenden

Vergleich von 3 4 und 3 5

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Zähler haben. In diesem Fall ist derjenige Bruch größer, der den kleineren Nenner hat (Schließlich bleibt mehr von einer Menge übrig, wenn man diese durch weniger Leute teilt als wenn man sie durch mehr teilt). Es gilt hier also 3 4 > 3 5

Vergleich von 7 11 und 8 11

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 11 teilt, als bei der kleineren, wenn man diese durch 11 teilt). Es gilt hier also 7 11 < 8 11

Vergleich von 5 9 und 10 18

Wenn man genau hinschaut, erkennt man, dass der Zähler des 2. ten Bruch doppelt so groß ist wie der des 1. ten. Wir erweitern deswegen 1-ten Bruch mit 2: 5 9 = 10 18

Jetzt kann man gut erkennen, dass 5 9 = 10 18 = 10 18 . Es gilt hier also 5 9 = 10 18

Mitte finden (von 2 Brüchen)

Beispiel:

Welcher Bruch liegt in der Mitte von 5 3 und 6 3 ?

Lösung einblenden

Da die Nenner gleich sind, genügt es die Mitte zwischen den Zählern der beiden Brüche zu finden.

Leider gibt es keine ganze Zahl in der Mitte zwischen 5 und 6.

Wenn wir aber beide Brüche mit 2 erweitern, bleibt ja einerseits der Wert der beiden Brüche gleich, andereseits verdoppeln sich aber die Zähler der beiden Brüche, so dass auch der Abstand zwischen diesen verdoppelt wird:

Es gilt: 5 3 = 10 6 und 6 3 = 12 6

Jetzt finden wir leicht die Mitte zwischen 10 und 12, nämlich 11, somit ist also 11 6 genau in der Mitte zwischen 5 3 = 10 6 und 6 3 = 12 6 .

Mitte finden (von 2 versch. Brüchen)

Beispiel:

Welcher Bruch liegt in der Mitte von - 3 2 und - 3 5 ?

Lösung einblenden

Um die Mitte zwischen zwei Brüchen zu finden, müssen wir die beiden Brüche erst einmal auf den gleichen Nenner bringen.

Dazu erweitern wir hier einfach jeweils mit dem Nenner des anderen Bruchs:

- 3 2 = - 15 10 und - 3 5 = - 6 10

Leider gibt es keine ganze Zahl in der Mitte zwischen 15 und 6.

Wenn wir aber beide Brüche noch mit 2 erweitern, verdoppeln sich die Zähler der beiden Brüche, so dass auch der Abstand zwischen diesen verdoppelt wird:

Es gilt: - 15 10 = - 30 20 und - 6 10 = - 12 20

Jetzt finden wir leicht die Mitte zwischen -30 und -12, nämlich 30 + 12 2 = -21, somit ist also - 21 20 genau in der Mitte zwischen - 3 2 = - 30 20 und - 3 5 = - 12 20 .

3 Brüche sortieren

Beispiel:

Sortiere die drei Brüche 5 2 3 , 16 3 und 26 5 von klein nach groß.

Lösung einblenden

Als erstes formen wir die Brüche um, so dass wir alle in gemischter Schreibweise vergleichen können:

5 2 3

16 3 = 15 + 1 3 = 15 3 + 1 3 = 5 + 1 3 = 5 1 3

26 5 = 25 + 1 5 = 25 5 + 1 5 = 5 + 1 5 = 5 1 5

Man erkennt, dass alle drei Brüche zwischen 5 und 6 liegen. 5 2 3 ist dabei aber die größte Zahl, weil sie als einzige größer als 5 1 2 ist. Das erkennt man daran, dass bei 2 3 der Zähler über der Hälfte vom Nenner ist.

Bleibt noch zu entscheiden, ob 5 1 5 oder 5 1 3 größer ist.
Da ja beide die 5 vorne haben, müssen wir dazu nur die Brüche 1 5 und 1 3 betrachten.

Und weil beide Brüche die 1 im Zähler haben, muss 1 5 die kleinere Zahl sein, weil ja die 1 durch mehr geteilt werden muss als bei 1 3 .

1 5
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

1 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Somit ergibt sich folgende Reihenfolge:

5 1 5 < 5 1 3 < 5 2 3 , also

26 5 < 16 3 < 5 2 3

Umwandlung echter - gemischter Bruch

Beispiel:

Gib den unechten Bruch 49 10 als gemischten Bruch an.

(Der Bruch soll in gekürzter Form bleiben.)

Lösung einblenden

Wir schauen zuerst, wie oft der Nenner in den Zähler passt und was dann noch als Rest übrig bleibt:

49 = 40 + 9 = 4⋅10 + 9

also gilt:

49 10 = 4⋅10 + 9 10 = 4⋅10 10 + 9 10 = 4 + 9 10

Somit gilt: 49 10 = 4 9 10