Aufgabenbeispiele von antiproportional
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zweisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 48 mal fahren.
Wie oft müssten 8 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Lastwagen in der ersten Zeile auf 8 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 48 Fuhren durch 8 teilen, um auf den Wert zu kommen, der den 8 Lastwagen entspricht:
⋅ 8
|
![]() |
|
![]() |
: 8
|
⋅ 8
|
![]() |
|
![]() |
: 8
|
Damit haben wir nun den gesuchten Wert, der den 8 Lastwagen entspricht: 6 Fuhren
Dreisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 12 Lastwagen müssten dafür 5 mal fahren.
Wie oft müssten 15 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 12 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 12 und von 15 sein, also der ggT(12,15) = 3.
Wir suchen deswegen erst den entsprechenden Wert für 3 Lastwagen:
|
Um von 12 Lastwagen in der ersten Zeile auf 3 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Fuhren nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 3 Lastwagen links entspricht:
: 4
|
![]() |
|
![]() |
⋅ 4
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 3 Lastwagen in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 20 Fuhren in der mittleren Zeile durch 5 dividieren:
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Damit haben wir nun den gesuchten Wert, der den 15 Lastwagen entspricht: 4 Fuhren
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
9 Liter pro 100km | 500 km |
? | ? |
15 Liter pro 100km | ? |
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.
Wir suchen deswegen erst den entsprechenden Wert für 3 Liter pro 100km:
|
Um von 9 Liter pro 100km in der ersten Zeile auf 3 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 500 km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Liter pro 100km links entspricht:
: 3
|
![]() |
|
![]() |
⋅ 3
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 3 Liter pro 100km in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 1500 km in der mittleren Zeile durch 5 dividieren:
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Damit haben wir nun den gesuchten Wert, der den 15 Liter pro 100km entspricht: 300 km
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 5€ für ein Los verlangen, müssten sie 90 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 3 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 10 Lose verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:
|
Um von 5 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 90 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 3 multiplizieren, um auf die 3 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 € Lospreis entspricht: 150 Lose
Um von 90 Lose in der ersten Zeile auf 10 Lose in der zweiten Zeile zu kommen, müssen wir durch 9 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 5 € Lospreis mit 9 multiplizieren, um auf den Wert zu kommen, der den 10 Lose entspricht:
: 9
|
![]() |
|
![]() |
⋅ 9
|
: 9
|
![]() |
|
![]() |
⋅ 9
|
Damit haben wir nun den gesuchten Wert, der den 10 Lose entspricht: 45 € Lospreis
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.
Wir überprüfen zuerst, ob die 11 Fuhren den 4 Lastwagen entsprechen.
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Der urpsrünglich vorgegebene Wert 11 Fuhren (für 4 Lastwagen) war also falsch, richtig wäre 10 Fuhren gewesen.
Jetzt überprüfen wir, ob die 7 Fuhren den 8 Lastwagen entsprechen.
: 5
⋅ 8
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 8
|
Der urpsrünglich vorgegebene Wert 7 Fuhren (für 8 Lastwagen) war also falsch, richtig wäre 5 Fuhren gewesen.