Aufgabenbeispiele von antiproportional

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zweisatz (antiproportional)

Beispiel:

Wenn eine Person das Schulhaus putzt, braucht sie dafür 24 h.

Wie lange bräuchten 6 Personen hierfür?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Person24 h
6 Personen?

Um von 1 Personen in der ersten Zeile auf 6 Personen in der zweiten Zeile zu kommen, müssen wir mit 6 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 24 h durch 6 teilen, um auf den Wert zu kommen, der den 6 Personen entspricht:

⋅ 6
1 Person24 h
6 Personen?
: 6
⋅ 6
1 Person24 h
6 Personen4 h
: 6

Damit haben wir nun den gesuchten Wert, der den 6 Personen entspricht: 4 h

Dreisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 8€ für ein Los verlangen, müssten sie 70 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 14 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


8 € Lospreis70 Lose
??
14 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 14 sein, also der ggT(8,14) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 € Lospreis:


8 € Lospreis70 Lose
2 € Lospreis?
14 € Lospreis?

Um von 8 € Lospreis in der ersten Zeile auf 2 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 70 Lose nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 € Lospreis links entspricht:

: 4

8 € Lospreis70 Lose
2 € Lospreis?
14 € Lospreis?

⋅ 4
: 4

8 € Lospreis70 Lose
2 € Lospreis280 Lose
14 € Lospreis?

⋅ 4

Jetzt müssen wir ja wieder die 2 € Lospreis in der mittleren Zeile mit 7 multiplizieren, um auf die 14 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 7

8 € Lospreis70 Lose
2 € Lospreis280 Lose
14 € Lospreis?

⋅ 4
: 7

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 280 Lose in der mittleren Zeile durch 7 dividieren:

: 4
⋅ 7

8 € Lospreis70 Lose
2 € Lospreis280 Lose
14 € Lospreis40 Lose

⋅ 4
: 7

Damit haben wir nun den gesuchten Wert, der den 14 € Lospreis entspricht: 40 Lose

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

5 Liter pro 100km900 km
??
3 Liter pro 100km?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:


5 Liter pro 100km900 km
1 Liter pro 100km?
3 Liter pro 100km?

Um von 5 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 900 km nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:

: 5

5 Liter pro 100km900 km
1 Liter pro 100km?
3 Liter pro 100km?

⋅ 5
: 5

5 Liter pro 100km900 km
1 Liter pro 100km4500 km
3 Liter pro 100km?

⋅ 5

Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 3

5 Liter pro 100km900 km
1 Liter pro 100km4500 km
3 Liter pro 100km?

⋅ 5
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 4500 km in der mittleren Zeile durch 3 dividieren:

: 5
⋅ 3

5 Liter pro 100km900 km
1 Liter pro 100km4500 km
3 Liter pro 100km1500 km

⋅ 5
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Liter pro 100km entspricht: 1500 km

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 7 Minuten telefonieren würde, würden ihre Freiminuten noch genau 8 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 4 min telefonieren würde?
Wie lange kann sie täglich telefonieren, wenn die Freiminuten 7 Tage reichen sollen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


7 Minuten pro Tag8 Tage
??
4 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:


7 Minuten pro Tag8 Tage
1 Minute pro Tag?
4 Minuten pro Tag?

Um von 7 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Tage nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:

: 7

7 Minuten pro Tag8 Tage
1 Minute pro Tag56 Tage
4 Minuten pro Tag?

⋅ 7

Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 4

7 Minuten pro Tag8 Tage
1 Minute pro Tag56 Tage
4 Minuten pro Tag14 Tage

⋅ 7
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Minuten pro Tag entspricht: 14 Tage



Für die andere Frage (Wie lange kann sie täglich telefonieren, wenn die Freiminuten 7 Tage reichen sollen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Tage"-Werte haben und nach einem "Minuten pro Tag"-Wert gesucht wird:


8 Tage7 Minuten pro Tag
??
7 Tage?

Wir suchen einen möglichst großen Zwischenwert für die Tage in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Tage teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 7 sein, also der ggT(8,7) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Tage:


8 Tage7 Minuten pro Tag
1 Tag?
7 Tage?

Um von 8 Tage in der ersten Zeile auf 1 Tage in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 Minuten pro Tag nicht durch 8 teilen, sondern mit 8 multiplizieren um auf den Wert zu kommen, der den 1 Tage links entspricht:

: 8

8 Tage7 Minuten pro Tag
1 Tag56 Minuten pro Tag
7 Tage?

⋅ 8

Jetzt müssen wir ja wieder die 1 Tage in der mittleren Zeile mit 7 multiplizieren, um auf die 7 Tage in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 8
⋅ 7

8 Tage7 Minuten pro Tag
1 Tag56 Minuten pro Tag
7 Tage8 Minuten pro Tag

⋅ 8
: 7

Damit haben wir nun den gesuchten Wert, der den 7 Tage entspricht: 8 Minuten pro Tag

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.

Lösung einblenden

Wir überprüfen zuerst, ob die 204 km den 25 Liter pro 100km entsprechen.

: 2
⋅ 5

10 Liter pro 100km500 km
5 Liter pro 100km1000 km
25 Liter pro 100km200 km

⋅ 2
: 5

Der urpsrünglich vorgegebene Wert 204 km (für 25 Liter pro 100km) war also falsch, richtig wäre 200 km gewesen.


Jetzt überprüfen wir, ob die 1000 km den 5 Liter pro 100km entsprechen.

: 2
⋅ 1

10 Liter pro 100km500 km
5 Liter pro 100km1000 km
5 Liter pro 100km1000 km

⋅ 2
: 1

Der urpsrünglich vorgegebene Wert 1000 km (für 5 Liter pro 100km) war also korrekt.