Aufgabenbeispiele von antiproportional

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zweisatz (antiproportional)

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 48 mal fahren.

Wie oft müssten 8 LKWs fahren?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Lastwagen48 Fuhren
8 Lastwagen?

Um von 1 Lastwagen in der ersten Zeile auf 8 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 48 Fuhren durch 8 teilen, um auf den Wert zu kommen, der den 8 Lastwagen entspricht:

⋅ 8
1 Lastwagen48 Fuhren
8 Lastwagen?
: 8
⋅ 8
1 Lastwagen48 Fuhren
8 Lastwagen6 Fuhren
: 8

Damit haben wir nun den gesuchten Wert, der den 8 Lastwagen entspricht: 6 Fuhren

Dreisatz (antiproportional)

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 12 Lastwagen müssten dafür 5 mal fahren.

Wie oft müssten 15 LKWs fahren?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


12 Lastwagen5 Fuhren
??
15 Lastwagen?

Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 12 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 12 und von 15 sein, also der ggT(12,15) = 3.

Wir suchen deswegen erst den entsprechenden Wert für 3 Lastwagen:


12 Lastwagen5 Fuhren
3 Lastwagen?
15 Lastwagen?

Um von 12 Lastwagen in der ersten Zeile auf 3 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Fuhren nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 3 Lastwagen links entspricht:

: 4

12 Lastwagen5 Fuhren
3 Lastwagen?
15 Lastwagen?

⋅ 4
: 4

12 Lastwagen5 Fuhren
3 Lastwagen20 Fuhren
15 Lastwagen?

⋅ 4

Jetzt müssen wir ja wieder die 3 Lastwagen in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 5

12 Lastwagen5 Fuhren
3 Lastwagen20 Fuhren
15 Lastwagen?

⋅ 4
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 20 Fuhren in der mittleren Zeile durch 5 dividieren:

: 4
⋅ 5

12 Lastwagen5 Fuhren
3 Lastwagen20 Fuhren
15 Lastwagen4 Fuhren

⋅ 4
: 5

Damit haben wir nun den gesuchten Wert, der den 15 Lastwagen entspricht: 4 Fuhren

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

9 Liter pro 100km500 km
??
15 Liter pro 100km?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.

Wir suchen deswegen erst den entsprechenden Wert für 3 Liter pro 100km:


9 Liter pro 100km500 km
3 Liter pro 100km?
15 Liter pro 100km?

Um von 9 Liter pro 100km in der ersten Zeile auf 3 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 500 km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Liter pro 100km links entspricht:

: 3

9 Liter pro 100km500 km
3 Liter pro 100km?
15 Liter pro 100km?

⋅ 3
: 3

9 Liter pro 100km500 km
3 Liter pro 100km1500 km
15 Liter pro 100km?

⋅ 3

Jetzt müssen wir ja wieder die 3 Liter pro 100km in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 5

9 Liter pro 100km500 km
3 Liter pro 100km1500 km
15 Liter pro 100km?

⋅ 3
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 1500 km in der mittleren Zeile durch 5 dividieren:

: 3
⋅ 5

9 Liter pro 100km500 km
3 Liter pro 100km1500 km
15 Liter pro 100km300 km

⋅ 3
: 5

Damit haben wir nun den gesuchten Wert, der den 15 Liter pro 100km entspricht: 300 km

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 5€ für ein Los verlangen, müssten sie 90 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 3 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 10 Lose verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 € Lospreis90 Lose
??
3 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


5 € Lospreis90 Lose
1 € Lospreis?
3 € Lospreis?

Um von 5 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 90 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 5

5 € Lospreis90 Lose
1 € Lospreis450 Lose
3 € Lospreis?

⋅ 5

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 3 multiplizieren, um auf die 3 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 3

5 € Lospreis90 Lose
1 € Lospreis450 Lose
3 € Lospreis150 Lose

⋅ 5
: 3

Damit haben wir nun den gesuchten Wert, der den 3 € Lospreis entspricht: 150 Lose



Um von 90 Lose in der ersten Zeile auf 10 Lose in der zweiten Zeile zu kommen, müssen wir durch 9 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 5 € Lospreis mit 9 multiplizieren, um auf den Wert zu kommen, der den 10 Lose entspricht:

: 9
90 Lose5 € Lospreis
10 Lose?
⋅ 9
: 9
90 Lose5 € Lospreis
10 Lose45 € Lospreis
⋅ 9

Damit haben wir nun den gesuchten Wert, der den 10 Lose entspricht: 45 € Lospreis

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.

Lösung einblenden

Wir überprüfen zuerst, ob die 11 Fuhren den 4 Lastwagen entsprechen.

: 5
⋅ 4

5 Lastwagen8 Fuhren
1 Lastwagen40 Fuhren
4 Lastwagen10 Fuhren

⋅ 5
: 4

Der urpsrünglich vorgegebene Wert 11 Fuhren (für 4 Lastwagen) war also falsch, richtig wäre 10 Fuhren gewesen.


Jetzt überprüfen wir, ob die 7 Fuhren den 8 Lastwagen entsprechen.

: 5
⋅ 8

5 Lastwagen8 Fuhren
1 Lastwagen40 Fuhren
8 Lastwagen5 Fuhren

⋅ 5
: 8

Der urpsrünglich vorgegebene Wert 7 Fuhren (für 8 Lastwagen) war also falsch, richtig wäre 5 Fuhren gewesen.