Aufgabenbeispiele von antiproportional

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zweisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 1 Minute telefonieren würde, würden ihre Freiminuten noch genau 48 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 6 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Minute pro Tag48 Tage
6 Minuten pro Tag?

Um von 1 Minuten pro Tag in der ersten Zeile auf 6 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir mit 6 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 48 Tage durch 6 teilen, um auf den Wert zu kommen, der den 6 Minuten pro Tag entspricht:

⋅ 6
1 Minute pro Tag48 Tage
6 Minuten pro Tag?
: 6
⋅ 6
1 Minute pro Tag48 Tage
6 Minuten pro Tag8 Tage
: 6

Damit haben wir nun den gesuchten Wert, der den 6 Minuten pro Tag entspricht: 8 Tage

Dreisatz (antiproportional)

Beispiel:

Wenn Frau Baumann so Auto fährt, dass sie 9 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 500 km weit.

Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "15 Liter/100km "-Schnitt fahren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


9 Liter pro 100km500 km
??
15 Liter pro 100km?

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.

Wir suchen deswegen erst den entsprechenden Wert für 3 Liter pro 100km:


9 Liter pro 100km500 km
3 Liter pro 100km?
15 Liter pro 100km?

Um von 9 Liter pro 100km in der ersten Zeile auf 3 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 500 km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Liter pro 100km links entspricht:

: 3

9 Liter pro 100km500 km
3 Liter pro 100km?
15 Liter pro 100km?

⋅ 3
: 3

9 Liter pro 100km500 km
3 Liter pro 100km1500 km
15 Liter pro 100km?

⋅ 3

Jetzt müssen wir ja wieder die 3 Liter pro 100km in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 5

9 Liter pro 100km500 km
3 Liter pro 100km1500 km
15 Liter pro 100km?

⋅ 3
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 1500 km in der mittleren Zeile durch 5 dividieren:

: 3
⋅ 5

9 Liter pro 100km500 km
3 Liter pro 100km1500 km
15 Liter pro 100km300 km

⋅ 3
: 5

Damit haben wir nun den gesuchten Wert, der den 15 Liter pro 100km entspricht: 300 km

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

9 Helfer:innen50 € Lohn
??
15 Helfer:innen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.

Wir suchen deswegen erst den entsprechenden Wert für 3 Helfer:innen:


9 Helfer:innen50 € Lohn
3 Helfer:innen?
15 Helfer:innen?

Um von 9 Helfer:innen in der ersten Zeile auf 3 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 € Lohn nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Helfer:innen links entspricht:

: 3

9 Helfer:innen50 € Lohn
3 Helfer:innen?
15 Helfer:innen?

⋅ 3
: 3

9 Helfer:innen50 € Lohn
3 Helfer:innen150 € Lohn
15 Helfer:innen?

⋅ 3

Jetzt müssen wir ja wieder die 3 Helfer:innen in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 5

9 Helfer:innen50 € Lohn
3 Helfer:innen150 € Lohn
15 Helfer:innen?

⋅ 3
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 150 € Lohn in der mittleren Zeile durch 5 dividieren:

: 3
⋅ 5

9 Helfer:innen50 € Lohn
3 Helfer:innen150 € Lohn
15 Helfer:innen30 € Lohn

⋅ 3
: 5

Damit haben wir nun den gesuchten Wert, der den 15 Helfer:innen entspricht: 30 € Lohn

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 6€ für ein Los verlangen, müssten sie 40 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 8 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 6 Lose verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


6 € Lospreis40 Lose
??
8 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 8 sein, also der ggT(6,8) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 € Lospreis:


6 € Lospreis40 Lose
2 € Lospreis?
8 € Lospreis?

Um von 6 € Lospreis in der ersten Zeile auf 2 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 40 Lose nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 € Lospreis links entspricht:

: 3

6 € Lospreis40 Lose
2 € Lospreis120 Lose
8 € Lospreis?

⋅ 3

Jetzt müssen wir ja wieder die 2 € Lospreis in der mittleren Zeile mit 4 multiplizieren, um auf die 8 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 4

6 € Lospreis40 Lose
2 € Lospreis120 Lose
8 € Lospreis30 Lose

⋅ 3
: 4

Damit haben wir nun den gesuchten Wert, der den 8 € Lospreis entspricht: 30 Lose



Für die andere Frage (Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 6 Lose verkaufen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Lose"-Werte haben und nach einem "€ Lospreis"-Wert gesucht wird:


40 Lose6 € Lospreis
??
6 Lose?

Wir suchen einen möglichst großen Zwischenwert für die Lose in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 40 Lose teilen müssen.) Diese Zahl sollte eine Teiler von 40 und von 6 sein, also der ggT(40,6) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Lose:


40 Lose6 € Lospreis
2 Lose?
6 Lose?

Um von 40 Lose in der ersten Zeile auf 2 Lose in der zweiten Zeile zu kommen, müssen wir durch 20 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 € Lospreis nicht durch 20 teilen, sondern mit 20 multiplizieren um auf den Wert zu kommen, der den 2 Lose links entspricht:

: 20

40 Lose6 € Lospreis
2 Lose120 € Lospreis
6 Lose?

⋅ 20

Jetzt müssen wir ja wieder die 2 Lose in der mittleren Zeile mit 3 multiplizieren, um auf die 6 Lose in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 20
⋅ 3

40 Lose6 € Lospreis
2 Lose120 € Lospreis
6 Lose40 € Lospreis

⋅ 20
: 3

Damit haben wir nun den gesuchten Wert, der den 6 Lose entspricht: 40 € Lospreis

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.

Lösung einblenden

Wir überprüfen zuerst, ob die 1404 km den 4 Liter pro 100km entsprechen.

: 7
⋅ 4

7 Liter pro 100km800 km
1 Liter pro 100km5600 km
4 Liter pro 100km1400 km

⋅ 7
: 4

Der urpsrünglich vorgegebene Wert 1404 km (für 4 Liter pro 100km) war also falsch, richtig wäre 1400 km gewesen.


Jetzt überprüfen wir, ob die 700 km den 8 Liter pro 100km entsprechen.

: 7
⋅ 8

7 Liter pro 100km800 km
1 Liter pro 100km5600 km
8 Liter pro 100km700 km

⋅ 7
: 8

Der urpsrünglich vorgegebene Wert 700 km (für 8 Liter pro 100km) war also korrekt.