Aufgabenbeispiele von Körper
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Volumeneinheiten umrechnen
Beispiel:
Wandle das Volumen in die angegebene Einheit um: 284 dm³ = ..... mm³
284 dm³ = 284000000 mm³
Raumeinheiten verrechnen
Beispiel:
Berechne und gib das Ergebnis in mm³ an:
1190 mm³ + 91 l
Als erstes ersetzen wir die Liter (l) durch dm³ :
1190 mm³ + 91 dm³
Um die beiden Werte miteinander verrechnen zu können, rechnen wir erst mal den Wert mit der größeren Einheit in die kleinere Einheit um:
91 dm³ = 91000 cm³ = 91000000 mm³
Jetzt können wir die beiden Werte gut verrechnen:
1190 mm³ + 91 dm³
= 1190 mm³ + 91000000 mm³
= 91001190 mm³
Volumen - Masse bei Wasser
Beispiel:
Ein Kubikzentimeter Wasser wiegt ein Gramm.
Wie viel wiegen 14 m³ Wasser ?
1 cm³ ≙ 1 g
1 000 000 cm³ ≙ 1 000 000 g
1 000 dm³ ≙ 1 000 kg
also 1 m³ ≙ 1 t
Somit wiegen 14 m³ Wasser eben 14 t
Volumen eines Quaders
Beispiel:
Ein Quader ist 2 mm lang, 5 mm breit und 7 mm hoch. Bestimme das Volumen V des Quaders.
Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:
V = a ⋅ b ⋅ c
= 2 mm ⋅ 5 mm ⋅ 7 mm
= 70 mm³
Quadervolumen offen
Beispiel:
Ein Quader ist hat das Volumen 210 cm³. Jede der drei Kantenlänge ist größer als 1 cm.
Bestimme mögliche Kantenlängen a, b und c.
Mögliche Werte wären z.B.:
a = 2 cm
b = 3 cm
c = 35 cm,
denn V = a ⋅ b ⋅ c = 2 cm ⋅ 3 cm ⋅ 35 cm = 210 cm³.
Volumen auch rückwärts
Beispiel:
Ein Quader ist 4 cm lang, 6 cm breit und 5 cm hoch. Bestimme das Volumen V des Quaders.
Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:
V = a ⋅ b ⋅ c
= 4 cm ⋅ 6 cm ⋅ 5 cm
= 120 cm³
Oberfläche eines Quaders
Beispiel:
Ein Quader ist 2 mm lang, 10 mm breit und 4 mm hoch. Bestimme die Oberfläche O des Quaders.
Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):
O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅2 mm⋅10 mm + 2⋅2 mm⋅4 mm
+ 2⋅10 mm⋅4 mm
= 40 mm² + 16 mm² + 80 mm²
= 136 mm²
Volumen auch rückwärts + Oberfl.
Beispiel:
Ein Quader ist 5 cm lang, 10 cm hoch und hat das Volumen V = 450 cm³. Bestimme die Breite b und die Oberfläche O des Quaders.
Das Volumen eines Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c
Also gilt: 450 cm³ = 5 cm ⋅ ⬜ ⋅ 10 cm
450 cm³ = ⬜ ⋅ 50 cm²
Das Kästchen kann man also mit 450 cm³ : 50 cm² = 9 cm berechnen.
Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):
O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅5 cm⋅10 cm + 2⋅5 cm⋅9 cm
+ 2⋅10 cm⋅9 cm
= 100 cm² + 90 cm² + 180 cm²
= 370 cm²
Würfel V+O rückwärts
Beispiel:
Ein Würfel hat das Volumen V = 27 cm³. Berechne die Kantenlänge.
Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c
Bei einem Würfel sind ja alle Kantenlängen gleich, also gilt hier
V = a ⋅ a ⋅ a = a3
Es gilt somit:
27 cm³ = ⬜3
Mit gezieltem Probieren findet man, dass dies mit a = 3 cm funktioniert.
Schrägbild zeichnen
Beispiel:
Zeichne in ein Koordinatensystem die Eckpunkte A(1|2), B(4|2), C(6|4) und G(6|8) ein und verbinde diese der Reihe nach.
Ergänze die Zeichnung zum Schrägbild und gib dann die Koordinaten der restlichen Eckpunkte des Quaders an.
Da bei einem Quader die Bodenfläche ja immer ein Rechteck ist, muss die hintere Kante zwischen D und C parallel und gleich lang wie die vordere Kante zwischen A und B sein - also 3 Einheiten (oder 6 Kästchen) in x-Richtung und 0 Kästchen nach oben. Somit gilt für den Punkt D des Schrägbilds D(6-3|4) = D(3|4).
An der Kante zwischen C und G kann man gut die Höhe des Quaders ablesen: 8-4 = 4. Somit muss auch der Punkt E genau 4 Einheiten über dem Punkt A(1|2) liegen, also bei E(1|2+4) = E(1|6).
Gleiches gilt auch für den Punkt F, der genau 4 Einheiten über dem Punkt B(4|2) liegen muss, also bei F(4|2+4) = F(4|6).
Gleiches gilt auch für den Punkt H, der genau 4 Einheiten über dem Punkt D(3|4) liegen muss, also bei H(3|4+4) = H(3|8).