Aufgabenbeispiele von Körper

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Volumeneinheiten umrechnen

Beispiel:

Wandle das Volumen in die angegebene Einheit um: 86500000 cm³ = ..... dm³

Lösung einblenden
Die korrekte Antwort lautet:
86500000 cm³ = 86500 dm³

Raumeinheiten verrechnen

Beispiel:

Berechne und gib das Ergebnis in dm³ an:

92 m³ + 620 l

Lösung einblenden

Als erstes ersetzen wir die Liter (l) durch dm³ :

92 m³ + 620 dm³

Um die beiden Werte miteinander verrechnen zu können, rechnen wir erst mal den Wert mit der größeren Einheit in die kleinere Einheit um:

92 m³ = 92000 dm³

Jetzt können wir die beiden Werte gut verrechnen:

92 m³ + 620 dm³
= 92000 dm³ + 620 dm³
= 92620 dm³

Volumen - Masse bei Wasser

Beispiel:

Ein Kubikzentimeter Wasser wiegt ein Gramm.

Wie viel wiegen 14 mm³ Wasser ?

Lösung einblenden

1 cm³ ≙ 1 g
1000 mm³ ≙ 1000 mg
also 1 mm³ ≙ 1 mg

Somit wiegen 14 mm³ Wasser eben 14 mg

Volumen eines Quaders

Beispiel:

Ein Quader ist 2 dm lang, 4 dm breit und 10 dm hoch. Bestimme das Volumen V des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:

V = a ⋅ b ⋅ c
= 2 dm ⋅ 4 dm ⋅ 10 dm
= 80 dm³

Quadervolumen offen

Beispiel:

Ein Quader ist hat das Volumen 20 dm³. Jede der drei Kantenlänge ist größer als 1 dm.

Bestimme mögliche Kantenlängen a, b und c.

Lösung einblenden

Mögliche Werte wären z.B.:
a = 2 dm
b = 2 dm
c = 5 dm,
denn V = a ⋅ b ⋅ c = 2 dm ⋅ 2 dm ⋅ 5 dm = 20 dm³.

Volumen auch rückwärts

Beispiel:

Ein Quader ist 4 cm lang, 9 cm breit und hat das Volumen V = 360 cm³. Bestimme die Höhe c des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen eines Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c

Also gilt: 360 cm³ = 4 cm ⋅ 9 cm ⋅ ⬜

360 cm³ = ⬜ ⋅ 36 cm²

Das Kästchen kann man also mit 360 cm³ : 36 cm² = 10 cm berechnen.

Oberfläche eines Quaders

Beispiel:

Ein Quader ist 6 mm lang, 8 mm breit und 5 mm hoch. Bestimme die Oberfläche O des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):

O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅6 mm⋅8 mm + 2⋅6 mm⋅5 mm + 2⋅8 mm⋅5 mm
= 96 mm² + 60 mm² + 80 mm²
= 236 mm²

Volumen auch rückwärts + Oberfl.

Beispiel:

Ein Quader ist 5 dm lang, 5 dm breit und 2 dm hoch. Bestimme das Volumen V und die Oberfläche O des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:

V = a ⋅ b ⋅ c
= 5 dm ⋅ 5 dm ⋅ 2 dm
= 50 dm³

Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):

O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅5 dm⋅5 dm + 2⋅5 dm⋅2 dm + 2⋅5 dm⋅2 dm
= 50 dm² + 20 dm² + 20 dm²
= 90 dm²

Würfel V+O rückwärts

Beispiel:

Ein Würfel hat die Oberfläche O = 96 mm². Berechne die Kantenlänge.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Würfel hat ja sechs gleich große Seitenflächen. Jede davon ist ein Quadrat mit der Kantenlänge a.
Also gilt für die Oberfläche eines Würfel mit Kantenlänge a:
O = 6 ⋅ a ⋅ a = 6a2

Es gilt somit:

96 mm² = 6 ⋅ ⬜2

Wenn 6 ⬜2 das Gleiche wie 96 ist, dann muss doch ein ⬜2 ein Sechstel von 96, also 16 ergeben.

16 mm² = ⬜2

Mit gezieltem Probieren findet man, dass dies mit a = 4 mm funktioniert.

Schrägbild zeichnen

Beispiel:

Zeichne in ein Koordinatensystem die Eckpunkte A(2|1), B(4|1), C(7|4) und G(7|8) ein und verbinde diese der Reihe nach.

Ergänze die Zeichnung zum Schrägbild und gib dann die Koordinaten der restlichen Eckpunkte des Quaders an.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da bei einem Quader die Bodenfläche ja immer ein Rechteck ist, muss die hintere Kante zwischen D und C parallel und gleich lang wie die vordere Kante zwischen A und B sein - also 2 Einheiten (oder 4 Kästchen) in x-Richtung und 0 Kästchen nach oben. Somit gilt für den Punkt D des Schrägbilds D(7-2|4) = D(5|4).

An der Kante zwischen C und G kann man gut die Höhe des Quaders ablesen: 8-4 = 4. Somit muss auch der Punkt E genau 4 Einheiten über dem Punkt A(2|1) liegen, also bei E(2|1+4) = E(2|5).

Gleiches gilt auch für den Punkt F, der genau 4 Einheiten über dem Punkt B(4|1) liegen muss, also bei F(4|1+4) = F(4|5).

Gleiches gilt auch für den Punkt H, der genau 4 Einheiten über dem Punkt D(5|4) liegen muss, also bei H(5|4+4) = H(5|8).