Aufgabenbeispiele von auch mal und geteilt

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Multiplizieren

Beispiel:

Berechne: -6 ⋅ 9

Lösung einblenden

Zuerst überlegt man sich welches Vorzeichen das Ergebnis haben muss. Und weil ja die beiden Zahlen verschiedene Vorzeichen haben, muss das Ergebnis negativ sein ("Minus mal Plus gibt Minus").

-6 ⋅ 9

= - (6 ⋅ 9)

= - (54)

= -54

Dividieren

Beispiel:

Berechne: -30 : 10

Lösung einblenden

Zuerst überlegt man sich welches Vorzeichen das Ergebnis haben muss. Und weil ja die beiden Zahlen verschiedene Vorzeichen haben, muss das Ergebnis negativ sein ("Minus geteilt durch Plus gibt Minus").

-30 : 10

= - (30 : 10)

= - (3)

= -3

Mal und Geteilt

Beispiel:

Berechne: 6 ⋅ 6

Lösung einblenden

Zuerst überlegt man sich welches Vorzeichen das Ergebnis haben muss. Und weil ja die beiden Zahlen das gleiche Vorzeichen haben, muss das Ergebnis positiv sein ("Plus mal Plus gibt Plus").

6 ⋅ 6

= + (6 ⋅ 6)

= + (36)

= 36

Punkt-vor-Strich

Beispiel:

Berechne: 9 · 9 +20

Lösung einblenden

9 · 9 +20

= 81 +20

= 101

Grundrechenarten verbal

Beispiel:

Multipliziere die Summe von 5 und -3 mit der Zahl 5.

Lösung einblenden

Zuerst müssen wir den Text in einen mathematischen Term übersetzen:

(5 + ( - 3 )) ⋅ 5

= (5 - 3) ⋅ 5

= 2 ⋅ 5

= 10

komplexer Term (5 Zahlen)

Beispiel:

Berechne: -6 - 11 + ( -30 - ( -18 ) ) : ( -3 )

Lösung einblenden

-6 - 11 + ( -30 - ( -18 ) ) : ( -3 )

= -6 -11 + ( -30 +18 ) : ( -3 )

= -17 -12 : ( -3 )

= -17 +4

= -13

Kästchenaufgabe (Rückwärts rechnen)

Beispiel:

Was muss in das Kästchen?
-50 : ⬜ = 25

Lösung einblenden

-50 : ⬜ = 25

"-" : "-" gibt "+" und
"-" : "+" gibt "-"
Also muss das Vorzeichen des Kästchens negativ sein

Das Kästchen muss also -2 sein, denn es gilt: -50 : ( - 2 ) = 25

Gleichungen

Beispiel:

Was muss in das Kästchen, damit die Gleichung stimmt?

-5 + ( 3 + ) · 2 = 5

Lösung einblenden
-5 + ( 3 + ) · 2 = 5 |+5
Wenn man von ( 3 + ) · 2 noch 5 abzieht, so erhält man 5. Also muss doch ( 3 + ) · 2 um 5 größer als 5 sein, also 10
( 3 + ) · 2 = 10 |:2
Wenn das 2-fache der Klammer ( 3 + ) gerade 10 ergibt, dann muss doch die Klammer ( 3 + ) selbst 10 : 2 = 5 sein.
3 + = 5 |-3
Wenn man zu noch 3 dazuzählt, so erhält man 5. Also muss doch um 3 kleiner als 5 sein, also 2
= 2 

Der gesuchte Wert für das Kästchens ⬜ ist somit: 2.

Minusklammer - Rechenvorteile

Beispiel:

Löse zuerst die Klammer auf und berechne dann möglichst geschickt:
10 -( -72 +110 )

Lösung einblenden

10 -( -72 +110 )

Wir lösen zuerst die Klammer auf.
Weil ein "-" vor der Klammer steht, müssen wir alle Vorzeichen in der Klammer umkehren, damit wir die Klammer weglassen können.

10 +72 -110

Jetzt suchen wir zwei Summanden, die gut zusammen passen, ändern entsprechend die Reihenfolge und berechnen zuerst die Summe der beiden passenden Summanden:

= 10 -110 +72

= -100 +72

= -28

Ausmultiplizieren

Beispiel:

Multipliziere aus und berechne: ( -20 +6 ) · 8

Lösung einblenden

( -20 +6 ) · 8

Jetzt müssen wir die Klammer ausmultiplizieren:

= -20 · 8 + 6 · 8

= -160 +48

= -112

Ausklammern

Beispiel:

Klammere aus und berechne: -4 · 102 -4 · 8 -4 · ( -10 )

Lösung einblenden

-4 · 102 -4 · 8 -4 · ( -10 )

Jetzt klammern wir am besten den Faktor -4 aus:

= -4 · ( 102 +8 -10 )

= -4 · 100

= -400

Potenzen mit Vorzeichen

Beispiel:

Berechne: - ( -4 ) 2

Lösung einblenden

Hier ist es ganz wichtig, dass man die Regel 'Hoch-vor-Punkt-vor-Strich' anwendet und unterscheidet, ob das Minus in Klammer ist (und damit mit potenziert werden muss) oder nicht.

- ( -4 ) 2

= -16