Aufgabenbeispiele von Wiederholung aus 9/10
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (höchst.)
Beispiel:
Eine Fluggesellschaft geht davon aus, dass 13% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 27-Platzmaschine höchstens verkaufen, so dass es zu mindestens 60% Wahrscheinlichkeit zu keiner Überbelegung kommt.
| n | P(X≤k) |
|---|---|
| ... | ... |
| 30 | 0.767 |
| 31 | 0.5864 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.87 und variablem n.
Es muss gelten: ≥ 0.6
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 87% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 31 Versuchen auch ungefähr 27 (≈0.87⋅31) Treffer auftreten.
Wir berechnen also mit unserem ersten n=31:
≈ 0.5864
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=30 die gesuchte Wahrscheinlichkeit über 60% ist.
kumulierte Binomialverteilung
Beispiel:
Ein Würfel wird 93 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass weniger als 7 mal eine 6 (p=1/6) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=93 und p=.
= = + + +... + = 0.0030854937599291 ≈ 0.0031(TI-Befehl: binomcdf(93,1/6,6))
Binomialvert. mit variablem p (diskret)
Beispiel:
In einer Urne sind 4 rote und einige schwarze Kugeln. Es soll 29 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 29 gezogenen Kugeln nicht mehr als 21 schwarze sind?
| p | P(X≤21) |
|---|---|
| ... | ... |
| 0.9997 | |
| 0.9959 | |
| 0.9801 | |
| 0.943 | |
| 0.8819 | |
| 0.8014 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=29 und unbekanntem Parameter p.
Es muss gelten: = 0.85 (oder mehr)
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 4 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit ('höchstens 21 Treffer bei 29 Versuchen') auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 85% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 7 sein.
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Bei einem Glücksrad soll mit einer Wahrscheinlichkeit von 90% bei 78 Ausspielungen nicht öfters als 71 mal der grüne Bereich kommen. Wie hoch darf man die Wahrscheinlichkeit für den grünen Bereich auf dem Glücksrad maximal setzen?
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.81 | 0.9954 |
| 0.82 | 0.9917 |
| 0.83 | 0.9854 |
| 0.84 | 0.9751 |
| 0.85 | 0.9585 |
| 0.86 | 0.933 |
| 0.87 | 0.895 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(78,X,71) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.86 die gesuchte Wahrscheinlichkeit über 0.9 ist.
kumulierte Binomialverteilung
Beispiel:
Eine Münze wird 37 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass höchstens 18 mal "Zahl" (p=0,5) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=37 und p=0.5.
= + + +... + = 0.5 ≈ 0.5(TI-Befehl: binomcdf(37,0.5,18))
Erwartungswert, Standardabweichung best.
Beispiel:
Eine Zufallsgröße ist binomialverteilt mit den Parametern n = 75 und p = 0.85
Bestimme den Erwartungswert μ und die Standardabweichung σ von X .
Für Erwartungswert und Standardabweichung bei der Binomialverteilung gibt es ja einfache Formeln, in die man einfach n = 75 und p = 0.85 einsetzen muss:
Erwartungswert E(X) = n ⋅ p = 75 ⋅ 0.85 = 63.75
Standardabweichung S(X) = = = ≈ 3.09
