Aufgabenbeispiele von Wiederholung aus 9/10
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (mind)
Beispiel:
Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßig exzessiven Alkoholgenuss bei 13% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 80%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 14 | 0.2708 |
| 15 | 0.1204 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.87 und variablem n.
Es muss gelten: ≥ 0.8
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.8 |+ - 0.8
0.2 ≥ oder ≤ 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 87% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 14 Versuchen auch ungefähr 12 (≈0.87⋅14) Treffer auftreten.
Wir berechnen also mit unserem ersten n=14:
≈ 0.2708
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=15 die gesuchte Wahrscheinlichkeit unter 0.2 ist.
n muss also mindestens 15 sein, damit ≤ 0.2 oder eben ≥ 0.8 gilt.
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 81% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 56 Versuchen mindestens 44 und weniger als 46 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=56 und p=0.81.
=
(TI-Befehl: binomcdf(56,0.81,45) - binomcdf(56,0.81,43))
Binomialvert. mit variablem p (diskret)
Beispiel:
Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 9 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 95 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 9 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 80% für die 95 Durchgänge reichen?
| p | P(X≤9) |
|---|---|
| ... | ... |
| 0.5184 | |
| 0.6376 | |
| 0.7329 | |
| 0.8056 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=95 und unbekanntem Parameter p.
Es muss gelten: =0.8 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 9 Treffer bei 95 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 9=⋅95 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 80% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens
13 sein.
Binomialvert. mit variabl. p (mind.) nur GTR
Beispiel:
Ein Glücksrad soll mit nur zwei verschiedenen Sektoren (blau und rot) gebaut werden. Wie hoch muss man die Einzelwahrscheinlichkeit p mindestens wählen, dass die Wahrscheinlichkeit bei 66 Wiederholungen 40 mal (oder mehr) rot zu treffen bei mind. 80% liegt?
| p | P(X≥40)=1-P(X≤39) |
|---|---|
| ... | ... |
| 0.6 | 0.5134 |
| 0.61 | 0.5795 |
| 0.62 | 0.6438 |
| 0.63 | 0.7046 |
| 0.64 | 0.7606 |
| 0.65 | 0.8107 |
| ... | ... |
Es muss gelten: =0.8 (oder mehr)
oder eben: 1- =0.8 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(66,X,39) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.65 die gesuchte Wahrscheinlichkeit über 0.8 ist.
Formel v. Bernoulli
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 5% entsteht. Es wird eine Stichprobe der Menge 52 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 8 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=52 und p=0.05.
= =0.0030769978218993≈ 0.0031(TI-Befehl: binompdf(52,0.05,8))
Erwartungswert, Standardabweichung best.
Beispiel:
Eine Zufallsgröße ist binomialverteilt mit den Parametern n = 62 und p = 0.6
Bestimme den Erwartungswert μ und die Standardabweichung σ von X .
Für Erwartungswert und Standardabweichung bei der Binomialverteilung gibt es ja einfache Formeln, in die man einfach n = 62 und p = 0.6 einsetzen muss:
Erwartungswert E(X) = n ⋅ p = 62 ⋅ 0.6 = 37.2
Standardabweichung S(X) = = = ≈ 3.86
