Aufgabenbeispiele von Wiederholung aus 9/10
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (höchst.)
Beispiel:
Der Starspieler der gegnerischen Basketballmannschaft hat bei Freiwürfen eine Trefferquote von p=0,9. Wie oft darf man ihn höchstens foulen und an die Freiwurflinie schicken, wenn man ihn mit einer Wahrscheinlichkeit von mindestens 80% nicht über 30 Freiwurfpunkte kommen lassen will?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 32 | 0.8436 |
| 33 | 0.6543 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenen Freiwürfe an und ist im Idealfall binomialverteilt mit p = 0.9 und variablem n.
Es muss gelten: ≥ 0.8
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 90% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 33 Versuchen auch ungefähr 30 (≈0.9⋅33) Treffer auftreten.
Wir berechnen also mit unserem ersten n=33:
≈ 0.6543
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=32 die gesuchte Wahrscheinlichkeit über 80% ist.
Binomialverteilung X>=k
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,15 entsteht. Es wird eine Stichprobe der Menge 66 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon 14 oder sogar noch mehr Chips defekt sind?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=66 und p=0.15.
(TI-Befehl: 1-binomcdf(66,0.15,13))
Binomialvert. mit variablem p (diskret)
Beispiel:
Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 12er-Packung mit der mindestens 75% Wahrscheinlichkeit 1 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?
| p | P(X≥1)=1-P(X≤0) |
|---|---|
| ... | ... |
| 0.9998 | |
| 0.9923 | |
| 0.9683 | |
| 0.9313 | |
| 0.8878 | |
| 0.8427 | |
| 0.7986 | |
| 0.7567 | |
| 0.7176 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=12 und unbekanntem Parameter p.
Es muss gelten: = 1- = 0.75 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('mindestens 1 Treffer bei 12 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Als Startwert wählen wir als p=.
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 75% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens
9 sein.
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Ein Promi macht Urlaub in einem Ferienclub. Dort sind noch weitere 52 Gäste. Wie groß darf der Bekanntheitsgrad des Promis höchstens sein, dass ihn mit einer Wahrscheinlichkeit von mindestens 90% nicht mehr als 25 erkennen und dumm anlabern?
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.35 | 0.9815 |
| 0.36 | 0.9733 |
| 0.37 | 0.9623 |
| 0.38 | 0.948 |
| 0.39 | 0.9299 |
| 0.4 | 0.9074 |
| 0.41 | 0.8802 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(52,X,25) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.4 die gesuchte Wahrscheinlichkeit über 0.9 ist.
kumulierte Binomialverteilung
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,55. Wie groß ist die Wahrscheinlichkeit bei 90 Versuchen höchstens 42 mal im grünen Bereich zu landen?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=90 und p=0.55.
= + + +... + = 0.069356953742719 ≈ 0.0694(TI-Befehl: binomcdf(90,0.55,42))
Erwartungswert, Standardabweichung best.
Beispiel:
Eine Zufallsgröße ist binomialverteilt mit den Parametern n = 44 und p = 0.9
Bestimme den Erwartungswert μ und die Standardabweichung σ von X .
Für Erwartungswert und Standardabweichung bei der Binomialverteilung gibt es ja einfache Formeln, in die man einfach n = 44 und p = 0.9 einsetzen muss:
Erwartungswert E(X) = n ⋅ p = 44 ⋅ 0.9 = 39.6
Standardabweichung S(X) = = = ≈ 1.99
