Aufgabenbeispiele von Wiederholung aus 9/10
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (mind)
Beispiel:
Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßig exzessiven Alkoholgenuss bei 12% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 60%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 13 | 0.4738 |
| 14 | 0.2315 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.88 und variablem n.
Es muss gelten: ≥ 0.6
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.6 |+ - 0.6
0.4 ≥ oder ≤ 0.4
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 88% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 14 Versuchen auch ungefähr 12 (≈0.88⋅14) Treffer auftreten.
Wir berechnen also mit unserem ersten n=14:
≈ 0.2315
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=14 die gesuchte Wahrscheinlichkeit unter 0.4 ist.
n muss also mindestens 14 sein, damit ≤ 0.4 oder eben ≥ 0.6 gilt.
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, mehr als 6 und höchstens 15 Glückskekse mit einer Peproni zu erwischen, wenn man 92 Glückskekse kauft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=92 und p=0.125.
=
(TI-Befehl: binomcdf(92,0.125,15) - binomcdf(92,0.125,6))
Binomialvert. mit variablem p (diskret)
Beispiel:
Die Homepage-AG einer Schule möchte auf der Startseite der Internetseite der Schule ein Zufallsbild integrieren. Dabei soll bei jedem Aufruf der Startseite ein zufälliges Bild aus einer Bilderdatenbank gezeigt werden. Alle Bilder der Datenbank sind immer gleich wahrscheinlich. Auf 2 Bildern der Datenbank sind Mitglieder der Homepage-AG zu sehen. Es wird geschätzt, dass die Seite täglich 120 mal aufgerufen wird. Die Mitglieder der Homepage-AG wollen dass mit mindestens 90%-iger Wahrscheinlichkiet mindestens 14 mal am Tag eines ihrer eigenen 2 Bilder erscheint. Wie viele andere Bilder dürfen dann höchstens noch in der Datenbank sein?
| p | P(X≥14)=1-P(X≤13) |
|---|---|
| ... | ... |
| 0.999 | |
| 0.9944 | |
| 0.9803 | |
| 0.9499 | |
| 0.8991 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Bilder mit Homepage-AG-lern an. X ist binomialverteilt mit n=120 und unbekanntem Parameter p.
Es muss gelten: = 1- = 0.9 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 2 sein muss, da es ja genau 2 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('mindestens 14 Treffer bei 120 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 90% bleibt.
Der Nenner, also die Anzahl aller Bilder in der Datenbank, darf also höchstens
12 sein.
Also wären noch 10 zusätzliche Optionen (also weitere Bilder) zulässig.
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Bei einem Glücksrad soll mit einer Wahrscheinlichkeit von 90% bei 96 Ausspielungen nicht öfters als 52 mal der grüne Bereich kommen. Wie hoch darf man die Wahrscheinlichkeit für den grünen Bereich auf dem Glücksrad maximal setzen?
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.43 | 0.9893 |
| 0.44 | 0.9822 |
| 0.45 | 0.9715 |
| 0.46 | 0.9559 |
| 0.47 | 0.9342 |
| 0.48 | 0.9051 |
| 0.49 | 0.8675 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(96,X,52) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.48 die gesuchte Wahrscheinlichkeit über 0.9 ist.
Formel v. Bernoulli
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 81 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so genau 24 Fragen richtig beantwortet hat?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=81 und p=.
= =0.061917825923453≈ 0.0619(TI-Befehl: binompdf(81,1/4,24))
Wahrscheinlichkeit von σ-Intervall um μ
Beispiel:
Ein Würfel wird 45 mal geworfen. Wie groß ist die Wahrscheinlichkeit, dass die Anzahl der gewürfelten 6er nicht mehr als eine Standardabweichung vom Erwartungswert abweicht?
Den Erwartungswert berechnet man mit μ = n⋅p = 45⋅ ≈ 7.5,
die Standardabweichung mit σ =
=
≈ 2.5
10 (7.5 + 2.5) und 5 (7.5 - 2.5) sind also jeweils eine Standardabweichung vom Erwartungswert μ = 7.5 entfernt.
Das bedeutet, dass genau die Zahlen zwischen 5 und 10 nicht mehr als eine Standardabweichung vom Erwartungswert entfernt sind.
Gesucht ist also die Wahrscheinlichkeit, dass die Trefferanzahl zwischen 5 und 10 liegt.
Die Zufallsgröße X gibt die Anzahl der Treffer an.
X ist binomialverteilt mit n=45 und p=
(TI-Befehl: binomcdf(45,
