Aufgabenbeispiele von Wiederholung aus 9/10

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (höchst.)

Beispiel:

Eine Fluggesellschaft geht davon aus, dass 10% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 24-Platzmaschine höchstens verkaufen, so dass es zu mindestens 80% Wahrscheinlichkeit zu keiner Überbelegung kommt.

Lösung einblenden
nP(X≤k)
......
250.9282
260.7487
270.5154
......

Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.9 und variablem n.

Es muss gelten: P0.9n (X24) ≥ 0.8

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 90% der Versuche mit einem Treffer. Also müssten dann doch bei 24 0.9 ≈ 27 Versuchen auch ungefähr 24 (≈0.9⋅27) Treffer auftreten.

Wir berechnen also mit unserem ersten n=27:
P0.9n (X24) ≈ 0.5154 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=25 die gesuchte Wahrscheinlichkeit über 80% ist.

Binomialverteilung X>=k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,35. Wie groß ist die Wahrscheinlichkeit bei 44 Versuchen mindestens 12 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=44 und p=0.35.

...
9
10
11
12
13
14
...

P0.3544 (X12) = 1 - P0.3544 (X11) = 0.8931
(TI-Befehl: 1-binomcdf(44,0.35,11))

Binomialvert. mit variablem p (diskret)

Beispiel:

Ein neuer Multiple Choice Test mit 13 verschiedenen Fragen soll entwickelt werden. Dabei muss immer genau eine von mehreren Antwortmöglichkeiten richtig sein. Die Anzahl an Antwortmöglichkeiten soll bei allen Fragen gleich sein. Insgesamt soll der Test so konzipiert sein, dass die Wahrscheinlichkeit mehr als 2 Fragen nur durch Raten zufällig richtig zu beantworten (obwohl man keinerlei Wissen hat) bei höchstens 30% liegt. Bestimme die hierfür notwendige Mindestanzahl an Antwortmöglichkeiten bei jeder Frage.

Lösung einblenden
pP(X≤2)
......
1 6 0.6281
1 7 0.7189
......

Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenenen Antworten an. X ist binomialverteilt mit n=13 und unbekanntem Parameter p.

Es muss gelten: Pp13 (X2) =0.7 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp13 (X2) ('höchstens 2 Treffer bei 13 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 2 13 . Mit diesem p wäre ja 2= 2 13 ⋅13 der Erwartungswert und somit Pp13 (X2) irgendwo in der nähe von 50%. Wenn wir nun p= 2 13 mit 1 2 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 6 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 7 die gesuchte Wahrscheinlichkeit über 70% steigt.
Der Nenner, also die Anzahl der Antwortmöglichkeiten, muss also mindestens 7 sein.

Binomialvert. mit variabl. p (mind.) nur GTR

Beispiel:

Ein Glücksrad soll mit nur zwei verschiedenen Sektoren (blau und rot) gebaut werden. Wie hoch muss man die Einzelwahrscheinlichkeit p mindestens wählen, dass die Wahrscheinlichkeit bei 87 Wiederholungen 29 mal (oder mehr) rot zu treffen bei mind. 70% liegt?

Lösung einblenden
pP(X≥29)=1-P(X≤28)
......
0.310.3567
0.320.4344
0.330.5139
0.340.592
0.350.666
0.360.7334
......

Es muss gelten: Pp87 (X29) =0.7 (oder mehr)

oder eben: 1- Pp87 (X28) =0.7 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(87,X,28) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.36 die gesuchte Wahrscheinlichkeit über 0.7 ist.

Binomialverteilung X ∈ [l;k]

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,55 entsteht. Es wird eine Stichprobe der Menge 63 entnommen. Wie groß ist die Wahrscheinlichkeit, dass die Anzahl der defekten Chips mindestens 35 und höchstens 41 beträgt?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=63 und p=0.55.

P0.5563 (35X41) =

...
32
33
34
35
36
37
38
39
40
41
42
43
...

P0.5563 (X41) - P0.5563 (X34) ≈ 0.9598 - 0.4832 ≈ 0.4766
(TI-Befehl: binomcdf(63,0.55,41) - binomcdf(63,0.55,34))

Wahrscheinlichkeit von σ-Intervall um μ

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,6. Wie groß ist die Wahrscheinlichkeit bei 77 Versuchen, dass die Anzahl der Treffer im grünen Bereich nicht mehr als eine Standardabweichung vom Erwartungswert abweicht?

Lösung einblenden

Den Erwartungswert berechnet man mit μ = n⋅p = 77⋅0.6 ≈ 46.2,
die Standardabweichung mit σ = n p (1-p) = 77 0.6 0.4 ≈ 4.3

50.5 (46.2 + 4.3) und 41.9 (46.2 - 4.3) sind also jeweils eine Standardabweichung vom Erwartungswert μ = 46.2 entfernt.

Das bedeutet, dass genau die Zahlen zwischen 42 und 50 nicht mehr als eine Standardabweichung vom Erwartungswert entfernt sind.

Gesucht ist also die Wahrscheinlichkeit, dass die Trefferanzahl zwischen 42 und 50 liegt.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=77 und p=0.6.

P0.677 (42X50) =

...
39
40
41
42
43
44
45
46
47
48
49
50
51
52
...

P0.677 (X50) - P0.677 (X41) ≈ 0.8414 - 0.1374 ≈ 0.704
(TI-Befehl: binomcdf(77,0.6,50) - binomcdf(77,0.6,41))