Aufgabenbeispiele von Wiederholung aus 9/10
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (höchst.)
Beispiel:
Beim MI6 (Arbeitsplatz von James Bond 007) soll eine Projektgruppe zur Aushebung einer multinationalen Superschurkenvereinigung eingerichtet werden. Bisherige Studien haben ergeben, dass diese kriminelle Vereinigung bereits alle wichtigen Regierungsbehörden infiltriert hat. Man geht davon aus, dass bereits jeder 50. MI6-Angestellte ein Spitzel dieser Organisiation ist. Wie groß darf diese Gruppe nun sein, so dass mit einer Wahrscheinlichkeit von mindestens 60% kein Spitzel in dieser Projektgruppe ist?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 20 | 0.6676 |
| 21 | 0.6543 |
| 22 | 0.6412 |
| 23 | 0.6283 |
| 24 | 0.6158 |
| 25 | 0.6035 |
| 26 | 0.5914 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Spitzel unter den MI6-Angestellten an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.
Es muss gelten: ≥ 0.6
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.
Wir berechnen also mit unserem ersten n=0:
≈ 1
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=25 die gesuchte Wahrscheinlichkeit über 60% ist.
kumulierte Binomialverteilung
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,23 entsteht. Es wird eine Stichprobe der Menge 70 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon nicht mehr als 11 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=70 und p=0.23.
= + + +... + = 0.091935893055934 ≈ 0.0919(TI-Befehl: binomcdf(70,0.23,11))
Binomialvert. mit variablem p (diskret)
Beispiel:
In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 29 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 70% unter den 29 gezogenen Kugeln nicht mehr als 21 schwarze sind?
| p | P(X≤21) |
|---|---|
| ... | ... |
| 0.9959 | |
| 0.943 | |
| 0.8014 | |
| 0.616 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=29 und unbekanntem Parameter p.
Es muss gelten: = 0.7 (oder mehr)
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 2 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit ('höchstens 21 Treffer bei 29 Versuchen') auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 70% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 4 sein.
Binomialvert. mit variabl. p (mind.) nur GTR
Beispiel:
Eine Fluggesellschaft verkauft 73 Flugtickets für einen bestimmten Flug. Das sind 49 Tickets mehr, als das Flugzeug Plätze hat. Wie hoch muss die Wahrscheinlichkeit, dass ein Ticketkäufer nicht mitfliegt, mindestens sein, dass das Flugzeug mit einer Wahrscheinlichkeit von mindestens 90% nicht überbucht ist (also dass alle mitfliegen können)?
| p | P(X≥49)=1-P(X≤48) |
|---|---|
| ... | ... |
| 0.69 | 0.6863 |
| 0.7 | 0.7496 |
| 0.71 | 0.8061 |
| 0.72 | 0.8547 |
| 0.73 | 0.8949 |
| 0.74 | 0.9268 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
oder eben: 1- =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(73,X,48) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.74 die gesuchte Wahrscheinlichkeit über 0.9 ist.
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 95 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 18, aber weniger als 26 Fragen richtig beantwortet hat?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=95 und p=0.25.
=
(TI-Befehl: binomcdf(95,0.25,25) - binomcdf(95,0.25,17))
Erwartungswert, Standardabweichung best.
Beispiel:
Eine Zufallsgröße ist binomialverteilt mit den Parametern n = 86 und p = 0.5
Bestimme den Erwartungswert μ und die Standardabweichung σ von X .
Für Erwartungswert und Standardabweichung bei der Binomialverteilung gibt es ja einfache Formeln, in die man einfach n = 86 und p = 0.5 einsetzen muss:
Erwartungswert E(X) = n ⋅ p = 86 ⋅ 0.5 = 43
Standardabweichung S(X) = = = ≈ 4.64
