Aufgabenbeispiele von Wiederholung aus 9/10
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Erwartungswert ganz offen
Beispiel:
Ein Spielautomatenhersteller bekommt von einem Kunden den Auftrag einen Automaten zu entwickeln, der folgenden Bedingungen erfüllt.
- Der Einsatz für ein Spiel soll 2€ betragen
- auf lange Sicht soll er 10ct Gewinn pro Spiel für den Betreiber abwerfen
- es sollen 5 verschiedene Felder (Kirsche, Zitrone, Apfel, Banane, Erdbeere) mit verschiedenen Auszahlungsbeträgen sein
- bei einem Feld soll keine Auszahlung erfolgen
- um Kunden zu locken soll bei einem Feld 34€ ausgezahlt werden
Eine (von vielen möglichen) Lösungen:
Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 34 | |||
Y Gewinn (Ausz. - Einsatz) | -2 | 32 | |||
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 34 | |||
Y Gewinn (Ausz. - Einsatz) | -2 | 32 | |||
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Bei der mittleren Option setzen wir den Betrag einfach gleich wie den Einsatz, so dass diese den Erwartungswert nicht verändert.
Als Wahrscheinlichkeit wählen wir einen Bruch so, dass die Restwahrscheinlichkeit für die verbleibenden zwei Optionen nicht allzu kompliziert wird.
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 2 | 34 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 0 | 32 | ||
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von ++=
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1-
=.
Diese wird auf die beiden verbleibenden Optionen verteilt:
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 2 | 34 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 0 | 32 | ||
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich ) setzt.
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 1 | 2 | 3 | 34 |
Y Gewinn (Ausz. - Einsatz) | -2 | -1 | 0 | 1 | 32 |
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Weil der Erwartungswert ja aber nicht 0 sondern sein soll, müssen wir nun noch den Auszahlungsbetrag
bei der 2. Option (betragsmäßig) vergrößern. Und zwar so, dass er mit der Wahrscheinlichkeit
multipliziert gerade um wächst.
Also x ⋅= => x=:
= = -0.8
Die neue Auszahlung für 'Zitrone' ist
also 0.2
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 0.2 | 2 | 3 | 34 |
Y Gewinn (Ausz. - Einsatz) | -2 | -1.8 | 0 | 1 | 32 |
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:
E(Y)= -2⋅ + -1.8⋅ + 0⋅ + 1⋅ + 32⋅
=
=
=
=
≈ -0.1
Erwartungswerte
Beispiel:
Ein Spieler darf aus einer Urne mit 6 blauen, 4 roten, 10 grünen und 4 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 24€. Bei rot erhält er 18€, bei grün erhält er 12€ und bei weiß erhält er 36€. Wieviel bringt ein Zug durchschnittlich ein?
Die Zufallsgröße X beschreibt den ausbezahlten €-Euro-Betrag.
Erwartungswert der Zufallsgröße X
Ereignis | blau | rot | grün | weiß |
Zufallsgröße xi | 24 | 18 | 12 | 36 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 24⋅ + 18⋅ + 12⋅ + 36⋅
=
=