Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 27 2 26 1 25 24 24
= 1 9 1 13 1 25 4 4
= 1 2925

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 8 2er und 6 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 5 ist?

Lösung einblenden
EreignisP
1 -> 1 9 100
1 -> 2 3 25
1 -> 3 9 100
2 -> 1 3 25
2 -> 2 4 25
2 -> 3 3 25
3 -> 1 9 100
3 -> 2 3 25
3 -> 3 9 100

Einzel-Wahrscheinlichkeiten: 1: 3 10 ; 2: 2 5 ; 3: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '2'-'3' (P= 3 25 )
  • '3'-'2' (P= 3 25 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 25 + 3 25 = 6 25


Kombinatorik

Beispiel:

Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 3 Hosen entscheiden. Für die Füße stehen ihr 6 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?

Lösung einblenden

Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 3 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 3 = 9 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 6 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 3 ⋅ 6 = 54 Möglichkeiten ergeben.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

Oma Hilde hat 12 Nougat-, 10 Krokant- und 15 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 16 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 5 Nougateier und genau 4 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 37 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 16 der insgesamt 37 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 16 von 37 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 37 16 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 12 5 ) verschiedene Möglichkeiten 5 Kreuzchen auf 12 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 5 gezogenen Nougateier unter den 12 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 12 Nougateier ziehen", also ( 12 5 ) Möglichkeiten.


Es gibt ( 10 7 ) verschiedene Möglichkeiten 7 Kreuzchen auf 10 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 7 gezogenen Krokanteier unter den 10 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "7 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 10 Krokanteier ziehen", also ( 10 7 ) Möglichkeiten.


Es gibt ( 15 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 15 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen Vollmilcheier unter den 15 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 15 Vollmilcheier ziehen", also ( 15 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 12 5 ) ( 10 7 ) ( 15 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "16 Ostereier aus 37 Ostereier ziehen" ( 37 16 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 12 5 ) ( 10 7 ) ( 15 4 ) ( 37 16 ) 0,0101 = 1,01%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Zahlenschloss hat 4 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 9 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl mehrfach vorkommt?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 9 Möglichkeiten gibt, die sich mit den 9 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 9⋅9⋅...⋅9 = 94 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 4 verschiedene Zahlen auftreten.


Es gibt ( 9 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 9 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 4 Zahlen unter den 9 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 4 Zahlen von 9 möglichen anzukreuzen. Dies sind ( 9 4 ) Möglichkeiten verschiedene 4er-Pakete aus 9 Zahlen zu packen.

Bei jeder dieser ( 9 4 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 4! = 4⋅3⋅2⋅1 Möglichkeiten. (4 Möglichkeiten für das erste Feld, 3 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 9 4 ) ⋅4! = 3024 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 9 4 ) ⋅4! 9⋅9⋅9⋅9 = 3024 6561 0,4609 = 46,09%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 10 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen, P = 10 21 . Bestimme eine mögliche Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 10 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 10 n + 10

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n n + 9

Zwei verschiedenfarbige Kugeln zu ziehen kann ja aber auch erst blau und dann rot bedeuten. Die Wahrscheinlichkeit für diesem Fall wäre dann n n + 10 10 n + 9

Die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen ist also 2 10 n +10 · n n +9 . Da diese Wahrscheinlichkeit ja 10 21 ist, gilt somit:

D=R\{ -10 ; -9 }

20n ( n +10 ) ( n +9 ) = 10 21

Wir multiplizieren den Nenner ( n +10 ) ( n +9 ) weg!

20n ( n +10 ) · ( n +9 ) = 10 21 |⋅( ( n +10 ) ( n +9 ) )
20n ( n +10 ) · ( n +9 ) · ( n +10 ) ( n +9 ) = 10 21 · ( n +10 ) ( n +9 )
20 n ( n +10 ) n +10 = 10 21 ( n +10 ) ( n +9 )
20n = 10 21 ( n +10 ) ( n +9 )
20n = 10 21 n 2 + 190 21 n + 300 7
20n = 10 21 n 2 + 190 21 n + 300 7 |⋅ 21
420n = 21( 10 21 n 2 + 190 21 n + 300 7 )
420n = 10 n 2 +190n +900 | -10 n 2 -190n -900
-10 n 2 +230n -900 = 0 |:10

- n 2 +23n -90 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = -23 ± 23 2 -4 · ( -1 ) · ( -90 ) 2( -1 )

n1,2 = -23 ± 529 -360 -2

n1,2 = -23 ± 169 -2

n1 = -23 + 169 -2 = -23 +13 -2 = -10 -2 = 5

n2 = -23 - 169 -2 = -23 -13 -2 = -36 -2 = 18

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 5 oder 18 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 3 Herz-Karten und 2 Kreuz-Karten. Im Kartenstapel B sind 9 Herz- und 3 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 10 Herz und 3 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 3 13 2 12 = 1 26

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 3 5 1 26 = 3 130

2. Möglichkeit: 9 Herz und 4 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 4 13 3 12 = 1 13

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 2 5 1 13 = 2 65

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 3 130 + 2 65 = 7 130 .