Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 1 3
= 1 4 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 16 ist?

Lösung einblenden
EreignisP
7 -> 7 2 15
7 -> 8 4 45
7 -> 9 8 45
8 -> 7 4 45
8 -> 8 1 45
8 -> 9 4 45
9 -> 7 8 45
9 -> 8 4 45
9 -> 9 2 15

Einzel-Wahrscheinlichkeiten: 7: 2 5 ; 8: 1 5 ; 9: 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'9' (P= 8 45 )
'9'-'7' (P= 8 45 )
'8'-'8' (P= 1 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

8 45 + 8 45 + 1 45 = 17 45


Kombinatorik

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 21 Schüler, in der 8b 24 Schüler und in der in der 8c 24 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 21 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 24 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 21 ⋅ 24 = 504 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 24 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 21 ⋅ 24 ⋅ 24 = 12096 Möglichkeiten ergeben.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 12 blaue und 18 gelbe Kugeln. Es werden 7 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 3 Kugeln blau sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 30 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 7 der insgesamt 30 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 7 von 30 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 30 7 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 12 3 ) verschiedene Möglichkeiten 3 Kreuzchen auf 12 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 3 gezogenen blauen unter den 12 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 12 blauen Kugeln ziehen", also ( 12 3 ) Möglichkeiten.


Es gibt ( 18 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 18 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen gelben unter den 18 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 18 gelben Kugeln ziehen", also ( 18 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 12 3 ) ( 18 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "7 Kugeln aus 30 Kugeln ziehen" ( 30 7 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 12 3 ) ( 18 4 ) ( 30 7 ) = 673200 2035800 0,3307 = 33,07%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 7 gleich großen Sektoren, die mit den Zahlen von 1 bis 7 beschriftet sind, wird 8 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass jede der 7 Zahlen dabei einmal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 7 Möglichkeiten gibt, die sich mit den 7 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 7⋅7⋅...⋅7 = 78 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle


Es gibt ( 8 2 ) verschiedene Möglichkeiten 2 Kreuzchen auf 8 Kästchen zu verteilen.
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten überlegen wir uns am besten zuerst, wie viele Möglichkeiten es für die beiden Felder (Drehungen) gibt, auf denen zwei gleiche Zahlen stehen. (Da jede Zahl mindestens einmal vorkommt, und es aber mehr Drehungen als Zahlen gibt, muss ja eine Zahl bei zwei Drehungen stehen).
Hierfür gibt es ( 8 2 ) Möglichkeiten.

Da ja nur Zahlen zwischen 1 und 7 möglich sind, gibt es somit ( 8 2 ) ⋅ 7 Möglichkeiten für die Belegung der beiden Felder mit gleichen Zahlen, weil ja eben jede der 7 Zahlen theoretisch doppelt vorkommen könnte.

Jetzt bleiben noch 6 Felder (Drehungen), die mit den anderen 6 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 6! = 6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten.
(6 Möglichkeiten für das erste Feld, 5 Möglichkeiten für das zweite ...)

Insgesamt erhalten wir somit ( 8 2 ) ⋅ 7 ⋅ 6⋅5⋅4⋅3⋅2⋅1 = 141120 günstige Möglichkeiten

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 8 2 ) ⋅ 7 ⋅ 6⋅5⋅4⋅3⋅2⋅1 7⋅7⋅7⋅7⋅7⋅7⋅7⋅7 = 141120 5764801 0,0245 = 2,45%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 4 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen, P = 8 15 . Bestimme eine mögliche Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 4 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 4 n + 4

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n n + 3

Zwei verschiedenfarbige Kugeln zu ziehen kann ja aber auch erst blau und dann rot bedeuten. Die Wahrscheinlichkeit für diesem Fall wäre dann n n + 4 4 n + 3

Die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen ist also 2 4 n +4 · n n +3 . Da diese Wahrscheinlichkeit ja 8 15 ist, gilt somit:

D=R\{ -4 ; -3 }

8n ( n +4 ) ( n +3 ) = 8 15

Wir multiplizieren den Nenner ( n +4 ) ( n +3 ) weg!

8n ( n +4 ) · ( n +3 ) = 8 15 |⋅( ( n +4 ) ( n +3 ) )
8n ( n +4 ) · ( n +3 ) · ( n +4 ) ( n +3 ) = 8 15 · ( n +4 ) ( n +3 )
8 n ( n +4 ) n +4 = 8 15 ( n +4 ) ( n +3 )
8n = 8 15 ( n +4 ) ( n +3 )
8n = 8 15 n 2 + 56 15 n + 32 5
8n = 8 15 n 2 + 56 15 n + 32 5 |⋅ 15
120n = 15( 8 15 n 2 + 56 15 n + 32 5 )
120n = 8 n 2 +56n +96 | -8 n 2 -56n -96
-8 n 2 +64n -96 = 0 |:8

- n 2 +8n -12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = -8 ± 8 2 -4 · ( -1 ) · ( -12 ) 2( -1 )

n1,2 = -8 ± 64 -48 -2

n1,2 = -8 ± 16 -2

n1 = -8 + 16 -2 = -8 +4 -2 = -4 -2 = 2

n2 = -8 - 16 -2 = -8 -4 -2 = -12 -2 = 6

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 2 oder 6 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Behälter A sind 3 rote und 3 blaue Kugeln. Im Behälter B sind 9 rote und 3 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:

1. Möglichkeit: 10 rote und 3 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) = 3 13 2 12 = 1 26

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote Kugel von Behälter A gezogen wurde:
P1 = 3 6 1 26 = 1 52

2. Möglichkeit: 9 rote und 4 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) = 4 13 3 12 = 1 13

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue Kugel von Behälter A gezogen wurde:
P2 = 3 6 1 13 = 1 26

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:

P = P1 + P2 = 1 52 + 1 26 = 3 52 .