Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 21 18 20
= 3 7 6 20
= 9 70

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine 6 zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'

Einzel-Wahrscheinlichkeiten :"6er": 1 6 ; "nicht 6er": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 6er' alle Möglichkeiten enthalten, außer eben kein '6er' bzw. 0 mal '6er'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal '6er')=1- 125 216 = 91 216

EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> nicht 6er 5 216
6er -> nicht 6er -> 6er 5 216
6er -> nicht 6er -> nicht 6er 25 216
nicht 6er -> 6er -> 6er 5 216
nicht 6er -> 6er -> nicht 6er 25 216
nicht 6er -> nicht 6er -> 6er 25 216
nicht 6er -> nicht 6er -> nicht 6er 125 216

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; nicht 6er: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'nicht 6er'-'nicht 6er' (P= 25 216 )
  • 'nicht 6er'-'6er'-'nicht 6er' (P= 25 216 )
  • 'nicht 6er'-'nicht 6er'-'6er' (P= 25 216 )
  • '6er'-'6er'-'nicht 6er' (P= 5 216 )
  • '6er'-'nicht 6er'-'6er' (P= 5 216 )
  • 'nicht 6er'-'6er'-'6er' (P= 5 216 )
  • '6er'-'6er'-'6er' (P= 1 216 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 216 + 25 216 + 25 216 + 5 216 + 5 216 + 5 216 + 1 216 = 91 216


Kombinatorik

Beispiel:

Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 3 Hosen entscheiden. Für die Füße stehen ihr 4 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?

Lösung einblenden

Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 3 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 3 = 9 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 4 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 3 ⋅ 4 = 36 Möglichkeiten ergeben.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

Bei einer Lotterie werden aus einem Lostopf mit 49 durchnummerierten Kugeln immer 9 Gewinnerkugeln zufällig gezogen. Jeder Teilnehmer an der Lotterie tippt nun genau 9 Zahlen. Bestimme die Wahrscheinlichkeit, dass man hierbei genau 4 der 9 Kugeln zufällig richtig tippt.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 9 der insgesamt 49 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 9 von 49 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 49 9 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 9 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 9 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 richtig getippten unter den 9 Gewinner-Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 9 Gewinner-Kugeln ziehen", also ( 9 4 ) Möglichkeiten.

Für die Anzahl der Möglichkeiten, die 5 falsch getippten unter den 40 Nicht-Gewinner-Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 40 Nicht-Gewinner-Kugeln ziehen", also ( 40 5 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 9 4 ) ( 40 5 ) Möglichkeiten, weil ja jeder Fall der richtig getippten mit jedem Fall der falsch getippten kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "9 Kugeln aus 49 Kugeln ziehen" ( 49 9 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 9 4 ) ( 40 5 ) ( 49 9 ) 0,0404 = 4,04%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 4 gleich großen Sektoren, die mit den Zahlen von 1 bis 4 beschriftet sind, wird 7 mal gedreht. Wie groß ist die Wahrscheinlichkeit, dass bei den 7 Drehungen eine Zahl genau 4 mal erscheint und alle anderen 3 Zahlen genau einmal?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 4 Möglichkeiten gibt, die sich mit den 4 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 4⋅4⋅...⋅4 = 47 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle


Es gibt ( 7 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 7 Kästchen zu verteilen.
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten überlegen wir uns am besten zuerst, wie viele Möglichkeiten es für die 4 Felder (Drehungen) gibt, auf denen die 4 gleichen Zahlen stehen.
Hierfür gibt es ( 7 4 ) Möglichkeiten.

Da ja nur Zahlen zwischen 1 und 4 möglich sind, gibt es somit ( 7 4 ) ⋅ 4 Möglichkeiten für die Belegung der 4 Felder (Drehungen) mit gleichen Zahlen, weil ja eben jede der 4 Zahlen theoretisch 4-fach vorkommen könnte.

Jetzt bleiben noch 3 Felder (Drehungen), die mit den anderen 3 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 3! = 3⋅2⋅1 Möglichkeiten.
(3 Möglichkeiten für das erste Feld, 2 Möglichkeiten für das zweite ...)

Insgesamt erhalten wir somit ( 7 4 ) ⋅ 4 ⋅ 3⋅2⋅1 = 840 günstige Möglichkeiten

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 7 4 ) ⋅ 4 ⋅ 3⋅2⋅1 4⋅4⋅4⋅4⋅4⋅4⋅4 = 840 16384 0,0513 = 5,13%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 2 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) = 28 45 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 2 Kugeln im Behälter.

Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit: n n + 2

Wenn dann auch tatsächlich "blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n-1 n - 1 + 2

Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also n n +2 · n -1 n +1 . Da diese Wahrscheinlichkeit ja 28 45 ist, gilt somit:

D=R\{ -2 ; -1 }

n ( n -1 ) ( n +2 ) ( n +1 ) = 28 45

Wir multiplizieren den Nenner ( n +2 ) ( n +1 ) weg!

n ( n -1 ) ( n +2 ) · ( n +1 ) = 28 45 |⋅( ( n +2 ) ( n +1 ) )
n ( n -1 ) ( n +2 ) · ( n +1 ) · ( n +2 ) ( n +1 ) = 28 45 · ( n +2 ) ( n +1 )
n · ( ( n -1 ) · 1 ) 1 = 28 45 ( n +2 ) ( n +1 )
n ( n -1 ) = 28 45 ( n +2 ) ( n +1 )
n · n + n · ( -1 ) = 28 45 ( n +2 ) ( n +1 )
n · n - n = 28 45 ( n +2 ) ( n +1 )
n 2 - n = 28 45 n 2 + 28 15 n + 56 45
n 2 - n = 28 45 n 2 + 28 15 n + 56 45 |⋅ 45
45( n 2 - n ) = 45( 28 45 n 2 + 28 15 n + 56 45 )
45 n 2 -45n = 28 n 2 +84n +56 | -28 n 2 -84n -56

17 n 2 -129n -56 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = +129 ± ( -129 ) 2 -4 · 17 · ( -56 ) 217

n1,2 = +129 ± 16641 +3808 34

n1,2 = +129 ± 20449 34

n1 = 129 + 20449 34 = 129 +143 34 = 272 34 = 8

n2 = 129 - 20449 34 = 129 -143 34 = -14 34 = - 7 17 ≈ -0.41

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 8 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Behälter A sind 3 rote und 3 blaue Kugeln. Im Behälter B sind 10 rote und 5 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:

1. Möglichkeit: 11 rote und 5 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) = 5 16 4 15 = 1 12

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote Kugel von Behälter A gezogen wurde:
P1 = 3 6 1 12 = 1 24

2. Möglichkeit: 10 rote und 6 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) = 6 16 5 15 = 1 8

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue Kugel von Behälter A gezogen wurde:
P2 = 3 6 1 8 = 1 16

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:

P = P1 + P2 = 1 24 + 1 16 = 5 48 .