Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 27 2 26 1 25 24 24
= 1 9 1 13 1 25 4 4
= 1 2925

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Beim Würfelspiel Mäxle würfelt man mit zwei Würfeln. Die größere Augenzahl nimmt man als Zehner, die kleinere als Einer (z.B. 3 und 5 ergibt 53). Ein Pasch (gleiche Zahlen bei beiden Würfeln) zählt mehr als alle anderen Ergebnisse. Lediglich ein Mäxle (eine 1 und ein 2) schlägt auch einen Pasch. Die beiden schlechtesten Ergebnisse sind also 31 und 32. Wie groß ist die Wahrscheinlichkeit dafür?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> höher 1 12
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> höher 1 12
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> höher 1 12
höher -> 1 1 12
höher -> 2 1 12
höher -> 3 1 12
höher -> höher 1 4

Einzel-Wahrscheinlichkeiten: 1: 1 6 ; 2: 1 6 ; 3: 1 6 ; höher: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 1 36 )
  • '3'-'1' (P= 1 36 )
  • '2'-'3' (P= 1 36 )
  • '3'-'2' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 + 1 36 = 1 9


Kombinatorik

Beispiel:

Ein spezielles Zahlenschloss hat 5 Ringe mit jeweils 6 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 5 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 5 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 ⋅ 6 ⋅ 6 = 65 = 7776 Möglichkeiten.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

Bei einer Lotterie werden aus einem Lostopf mit 47 durchnummerierten Kugeln immer 8 Gewinnerkugeln zufällig gezogen. Jeder Teilnehmer an der Lotterie tippt nun genau 8 Zahlen. Bestimme die Wahrscheinlichkeit, dass man hierbei genau 3 der 8 Kugeln zufällig richtig tippt.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 8 der insgesamt 47 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 8 von 47 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 47 8 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 8 3 ) verschiedene Möglichkeiten 3 Kreuzchen auf 8 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 3 richtig getippten unter den 8 Gewinner-Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 8 Gewinner-Kugeln ziehen", also ( 8 3 ) Möglichkeiten.

Für die Anzahl der Möglichkeiten, die 5 falsch getippten unter den 39 Nicht-Gewinner-Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 39 Nicht-Gewinner-Kugeln ziehen", also ( 39 5 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 8 3 ) ( 39 5 ) Möglichkeiten, weil ja jeder Fall der richtig getippten mit jedem Fall der falsch getippten kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "8 Kugeln aus 47 Kugeln ziehen" ( 47 8 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 8 3 ) ( 39 5 ) ( 47 8 ) 0,1025 = 10,25%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Zahlenschloss hat 6 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 10 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl mehrfach vorkommt?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 10 Möglichkeiten gibt, die sich mit den 10 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 10⋅10⋅...⋅10 = 106 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 6 verschiedene Zahlen auftreten.


Es gibt ( 10 6 ) verschiedene Möglichkeiten 6 Kreuzchen auf 10 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 6 Zahlen unter den 10 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 6 Zahlen von 10 möglichen anzukreuzen. Dies sind ( 10 6 ) Möglichkeiten verschiedene 6er-Pakete aus 10 Zahlen zu packen.

Bei jeder dieser ( 10 6 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 6! = 6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten. (6 Möglichkeiten für das erste Feld, 5 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 10 6 ) ⋅6! = 151200 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 10 6 ) ⋅6! 10⋅10⋅10⋅10⋅10⋅10 = 151200 1000000 0,1512 = 15,12%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 10 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen, P(r-r) = 3 7 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 10 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 10 n + 10

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "rot" beim zweiten Versuch ist dann: 9 n + 9

Die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen ist also 10 n +10 · 9 n +9 . Da diese Wahrscheinlichkeit ja 3 7 ist, gilt somit:

D=R\{ -10 ; -9 }

90 ( n +10 ) ( n +9 ) = 3 7

Wir multiplizieren den Nenner ( n +10 ) · ( n +9 ) weg!

90 ( n +10 ) · ( n +9 ) = 3 7 |⋅( ( n +10 ) · ( n +9 ) )
90 ( n +10 ) · ( n +9 ) · ( n +10 ) · ( n +9 ) = 3 7 · ( n +10 ) · ( n +9 )
90 n +10 n +10 = 3 7 ( n +10 ) ( n +9 )
90 = 3 7 ( n +10 ) ( n +9 )
90 = 3 7 n 2 + 57 7 n + 270 7
90 = 3 7 n 2 + 57 7 n + 270 7 |⋅ 7
630 = 7( 3 7 n 2 + 57 7 n + 270 7 )
630 = 3 n 2 +57n +270 | -3 n 2 -57n -270
-3 n 2 -57n +360 = 0 |:3

- n 2 -19n +120 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = +19 ± ( -19 ) 2 -4 · ( -1 ) · 120 2( -1 )

n1,2 = +19 ± 361 +480 -2

n1,2 = +19 ± 841 -2

n1 = 19 + 841 -2 = 19 +29 -2 = 48 -2 = -24

n2 = 19 - 841 -2 = 19 -29 -2 = -10 -2 = 5

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 5 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Behälter A sind 2 rote und 2 blaue Kugeln. Im Behälter B sind 7 rote und 3 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:

1. Möglichkeit: 8 rote und 3 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 4 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) = 3 11 2 10 = 3 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote Kugel von Behälter A gezogen wurde:
P1 = 2 4 3 55 = 3 110

2. Möglichkeit: 7 rote und 4 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 4 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) = 4 11 3 10 = 6 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue Kugel von Behälter A gezogen wurde:
P2 = 2 4 6 55 = 3 55

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:

P = P1 + P2 = 3 110 + 3 55 = 9 110 .