Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 4 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 7 2 6 4 5
= 1 7 2 2 5
= 4 35

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?

Lösung einblenden

Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'

Einzel-Wahrscheinlichkeiten :"Teiler": 2 3 ; "nicht Teiler": 1 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Teiler' alle Möglichkeiten enthalten, außer eben kein 'Teiler' bzw. 0 mal 'Teiler'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Teiler')=1- 1 27 = 26 27

EreignisP
Teiler -> Teiler -> Teiler 8 27
Teiler -> Teiler -> nicht Teiler 4 27
Teiler -> nicht Teiler -> Teiler 4 27
Teiler -> nicht Teiler -> nicht Teiler 2 27
nicht Teiler -> Teiler -> Teiler 4 27
nicht Teiler -> Teiler -> nicht Teiler 2 27
nicht Teiler -> nicht Teiler -> Teiler 2 27
nicht Teiler -> nicht Teiler -> nicht Teiler 1 27

Einzel-Wahrscheinlichkeiten: Teiler: 2 3 ; nicht Teiler: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Teiler'-'nicht Teiler'-'nicht Teiler' (P= 2 27 )
  • 'nicht Teiler'-'Teiler'-'nicht Teiler' (P= 2 27 )
  • 'nicht Teiler'-'nicht Teiler'-'Teiler' (P= 2 27 )
  • 'Teiler'-'Teiler'-'nicht Teiler' (P= 4 27 )
  • 'Teiler'-'nicht Teiler'-'Teiler' (P= 4 27 )
  • 'nicht Teiler'-'Teiler'-'Teiler' (P= 4 27 )
  • 'Teiler'-'Teiler'-'Teiler' (P= 8 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 27 + 2 27 + 2 27 + 4 27 + 4 27 + 4 27 + 8 27 = 26 27


Kombinatorik

Beispiel:

Petra hat sich ein 9-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 9 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 9 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 8 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 7 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 362880 Möglichkeiten.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

Oma Hilde hat 13 Nougat-, 10 Krokant- und 12 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 19 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 4 Nougateier und genau 8 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 35 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 19 der insgesamt 35 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 19 von 35 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 35 19 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 13 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 13 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen Nougateier unter den 13 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 13 Nougateier ziehen", also ( 13 4 ) Möglichkeiten.


Es gibt ( 10 7 ) verschiedene Möglichkeiten 7 Kreuzchen auf 10 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 7 gezogenen Krokanteier unter den 10 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "7 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 10 Krokanteier ziehen", also ( 10 7 ) Möglichkeiten.


Es gibt ( 12 8 ) verschiedene Möglichkeiten 8 Kreuzchen auf 12 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 8 gezogenen Vollmilcheier unter den 12 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 12 Vollmilcheier ziehen", also ( 12 8 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 13 4 ) ( 10 7 ) ( 12 8 ) Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "19 Ostereier aus 35 Ostereier ziehen" ( 35 19 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 13 4 ) ( 10 7 ) ( 12 8 ) ( 35 19 ) 0,0105 = 1,05%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Zahlenschloss hat 6 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 5 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass darin alle 5 Zahlen enthalten sind?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 5 Möglichkeiten gibt, die sich mit den 5 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 5⋅5⋅...⋅5 = 56 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.

Anzahl der günstigen Fälle


Es gibt ( 6 2 ) verschiedene Möglichkeiten 2 Kreuzchen auf 6 Kästchen zu verteilen.
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten überlegen wir uns am besten zuerst, wie viele Möglichkeiten es für die beiden Felder (Zahlenschlossräder) gibt, auf denen zwei gleiche Zahlen stehen. (Da jede Zahl mindestens einmal vorkommt, und es aber mehr Zahlenschlossräder als Zahlen gibt, muss ja eine Zahl bei zwei Zahlenschlossräder stehen).
Hierfür gibt es ( 6 2 ) Möglichkeiten.

Da ja nur Zahlen zwischen 1 und 5 möglich sind, gibt es somit ( 6 2 ) ⋅ 5 Möglichkeiten für die Belegung der beiden Felder mit gleichen Zahlen, weil ja eben jede der 5 Zahlen theoretisch doppelt vorkommen könnte.

Jetzt bleiben noch 4 Felder (Zahlenschlossräder), die mit den anderen 4 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 4! = 4⋅3⋅2⋅1 Möglichkeiten.
(4 Möglichkeiten für das erste Feld, 3 Möglichkeiten für das zweite ...)

Insgesamt erhalten wir somit ( 6 2 ) ⋅ 5 ⋅ 4⋅3⋅2⋅1 = 1800 günstige Möglichkeiten

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 6 2 ) ⋅ 5 ⋅ 4⋅3⋅2⋅1 5⋅5⋅5⋅5⋅5⋅5 = 1800 15625 0,1152 = 11,52%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 10 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen, P = 10 21 . Bestimme eine mögliche Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 10 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 10 n + 10

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n n + 9

Zwei verschiedenfarbige Kugeln zu ziehen kann ja aber auch erst blau und dann rot bedeuten. Die Wahrscheinlichkeit für diesem Fall wäre dann n n + 10 10 n + 9

Die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen ist also 2 10 n +10 · n n +9 . Da diese Wahrscheinlichkeit ja 10 21 ist, gilt somit:

D=R\{ -10 ; -9 }

20n ( n +10 ) ( n +9 ) = 10 21

Wir multiplizieren den Nenner ( n +10 ) ( n +9 ) weg!

20n ( n +10 ) · ( n +9 ) = 10 21 |⋅( ( n +10 ) ( n +9 ) )
20n ( n +10 ) · ( n +9 ) · ( n +10 ) ( n +9 ) = 10 21 · ( n +10 ) ( n +9 )
20 n ( n +10 ) n +10 = 10 21 ( n +10 ) ( n +9 )
20n = 10 21 ( n +10 ) ( n +9 )
20n = 10 21 n 2 + 190 21 n + 300 7
20n = 10 21 n 2 + 190 21 n + 300 7 |⋅ 21
420n = 21( 10 21 n 2 + 190 21 n + 300 7 )
420n = 10 n 2 +190n +900 | -10 n 2 -190n -900
-10 n 2 +230n -900 = 0 |:10

- n 2 +23n -90 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = -23 ± 23 2 -4 · ( -1 ) · ( -90 ) 2( -1 )

n1,2 = -23 ± 529 -360 -2

n1,2 = -23 ± 169 -2

n1 = -23 + 169 -2 = -23 +13 -2 = -10 -2 = 5

n2 = -23 - 169 -2 = -23 -13 -2 = -36 -2 = 18

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 5 oder 18 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 3 Herz-Karten und 2 Kreuz-Karten. Im Kartenstapel B sind 8 Herz- und 4 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 9 Herz und 4 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 4 13 3 12 = 1 13

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 3 5 1 13 = 3 65

2. Möglichkeit: 8 Herz und 5 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 5 13 4 12 = 5 39

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 2 5 5 39 = 2 39

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 3 65 + 2 39 = 19 195 .