Aufgabenbeispiele von Pfadregel, Kombinatorik
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 3 Kugeln, die mit einer 1 beschriftet sind, 10 kugel mit einer 2 und 7 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 4 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ;
Die relevanten Pfade sind:
'1'-'3' (P=)
'3'-'1' (P=)
'2'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Kombinatorik
Beispiel:
Eine Mathelehrerin war bei 8 SchülerInnen ihrer Klasse mit den Ergebnissen der letzten Klassenarbeit nicht zufrieden. Deswegen möchte sie jetzt diese Schüler immer in kleinen Abfragen erneut überprüfen. Als sie sich eine Reihenfolge überlegen wollte, bemerkt sie, dass es dafür ja ziemlich viele Möglichkeiten gibt. Wie viele genau?
Für die erste Stelle ist jede(r) möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 40320 Möglichkeiten.
n Richtige tippen (ohne Zurücklegen)
Beispiel:
Oma Hilde hat 12 Nougat-, 11 Krokant- und 13 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 20 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 5 Nougateier und genau 8 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 36 durchnummeriert wären.
Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 20 der insgesamt 36 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 20 von 36 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten verwenden.
Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:
Es gibt verschiedene Möglichkeiten 5 Kreuzchen auf 12 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 5 gezogenen Nougateier unter den 12 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 12 Nougateier ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 7 Kreuzchen auf 11 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 7 gezogenen Krokanteier unter den 11 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "7 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 11 Krokanteier ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 8 Kreuzchen auf 13 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 8 gezogenen Vollmilcheier unter den 13 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 13 Vollmilcheier ziehen", also Möglichkeiten.
Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ⋅ ⋅ Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "20 Ostereier aus 36 Ostereier ziehen" ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P = = ≈ 0,046 = 4,6%
nur verschiedene (mit Zurücklegen)
Beispiel:
Ein Glücksrad mit 9 gleich großen Sektoren, die mit den Zahlen von 1 bis 9 beschriftet sind, wird 5 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl zweimal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Anzahl der möglichen Fälle
Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 9 Möglichkeiten gibt, die sich mit den 9 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 9⋅9⋅...⋅9 = 95 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.
Anzahl der günstigen Fälle
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 5 verschiedene Zahlen auftreten.
Es gibt
Bei jeder dieser
Insgesamt kommen wir so auf
Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P =
Ohne Zurücklegen rückwärts
Beispiel:
In einem Behälter sind 10 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen, P =
Insgesamt sind also n + 10 Kugeln im Behälter.
Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit:
Wenn dann auch tatsächlich
"rot" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann:
Zwei verschiedenfarbige Kugeln zu ziehen kann ja aber auch erst blau und dann rot bedeuten. Die Wahrscheinlichkeit für diesem Fall wäre dann
Die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen ist also
D=R\{
|
|
= |
|
Wir multiplizieren den Nenner
|
|
= |
|
|⋅(
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
= |
|
|⋅ 21 |
|
|
= |
|
|
|
|
= |
|
|
|
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
n1,2 =
n1,2 =
n1,2 =
n1 =
n2 =
(Alle Lösungen sind auch in der Definitionsmenge).
Es waren also 5 oder 18 blaue Kugeln im Behälter.
2 Urnen
Beispiel:
In einem Behälter A sind 2 rote und 3 blaue Kugeln. Im Behälter B sind 6 rote und 4 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.
Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:
1. Möglichkeit: 7 rote und 4 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote
Kugel von Behälter A gezogen wurde:
P1 =
2. Möglichkeit: 6 rote und 5 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue
Kugel von Behälter A gezogen wurde:
P2 =
Beide Möglichkeiten zusammen:
Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:
P = P1 + P2 =
