Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 10 rote und 3 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 13 10 12
= 1 13 10 4
= 5 26

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 2 rote und 8 blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden
EreignisP
rot -> rot 1 45
rot -> blau 8 45
blau -> rot 8 45
blau -> blau 28 45

Einzel-Wahrscheinlichkeiten: rot: 1 5 ; blau: 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 1 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 45 = 1 45


Kombinatorik

Beispiel:

Eine Mathelehrerin war bei 8 SchülerInnen ihrer Klasse mit den Ergebnissen der letzten Klassenarbeit nicht zufrieden. Deswegen möchte sie jetzt diese Schüler immer in kleinen Abfragen erneut überprüfen. Als sie sich eine Reihenfolge überlegen wollte, bemerkt sie, dass es dafür ja ziemlich viele Möglichkeiten gibt. Wie viele genau?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 40320 Möglichkeiten.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

Oma Hilde hat 11 Nougat-, 13 Krokant- und 15 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 11 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 3 Nougateier und genau 4 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 39 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 11 der insgesamt 39 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 11 von 39 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 39 11 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 11 3 ) verschiedene Möglichkeiten 3 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 3 gezogenen Nougateier unter den 11 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 11 Nougateier ziehen", also ( 11 3 ) Möglichkeiten.


Es gibt ( 13 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 13 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen Krokanteier unter den 13 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 13 Krokanteier ziehen", also ( 13 4 ) Möglichkeiten.


Es gibt ( 15 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 15 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen Vollmilcheier unter den 15 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 15 Vollmilcheier ziehen", also ( 15 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 11 3 ) ( 13 4 ) ( 15 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "11 Ostereier aus 39 Ostereier ziehen" ( 39 11 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 11 3 ) ( 13 4 ) ( 15 4 ) ( 39 11 ) 0,0961 = 9,61%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Zahlenschloss hat 7 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 9 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl mehrfach vorkommt?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 9 Möglichkeiten gibt, die sich mit den 9 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 9⋅9⋅...⋅9 = 97 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 7 verschiedene Zahlen auftreten.


Es gibt ( 9 7 ) verschiedene Möglichkeiten 7 Kreuzchen auf 9 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 7 Zahlen unter den 9 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 7 Zahlen von 9 möglichen anzukreuzen. Dies sind ( 9 7 ) Möglichkeiten verschiedene 7er-Pakete aus 9 Zahlen zu packen.

Bei jeder dieser ( 9 7 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 7! = 7⋅6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten. (7 Möglichkeiten für das erste Feld, 6 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 9 7 ) ⋅7! = 181440 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 9 7 ) ⋅7! 9⋅9⋅9⋅9⋅9⋅9⋅9 = 181440 4782969 0,0379 = 3,79%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 3 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) = 7 15 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 3 Kugeln im Behälter.

Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit: n n + 3

Wenn dann auch tatsächlich "blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n-1 n - 1 + 3

Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also n n +3 · n -1 n +2 . Da diese Wahrscheinlichkeit ja 7 15 ist, gilt somit:

D=R\{ -3 ; -2 }

n ( n -1 ) ( n +3 ) ( n +2 ) = 7 15

Wir multiplizieren den Nenner ( n +3 ) ( n +2 ) weg!

n ( n -1 ) ( n +3 ) · ( n +2 ) = 7 15 |⋅( ( n +3 ) ( n +2 ) )
n ( n -1 ) ( n +3 ) · ( n +2 ) · ( n +3 ) ( n +2 ) = 7 15 · ( n +3 ) ( n +2 )
n · ( ( n -1 ) · 1 ) 1 = 7 15 ( n +3 ) ( n +2 )
n ( n -1 ) = 7 15 ( n +3 ) ( n +2 )
n · n + n · ( -1 ) = 7 15 ( n +3 ) ( n +2 )
n · n - n = 7 15 ( n +3 ) ( n +2 )
n 2 - n = 7 15 n 2 + 7 3 n + 14 5
n 2 - n = 7 15 n 2 + 7 3 n + 14 5 |⋅ 15
15( n 2 - n ) = 15( 7 15 n 2 + 7 3 n + 14 5 )
15 n 2 -15n = 7 n 2 +35n +42 | -7 n 2 -35n -42
8 n 2 -50n -42 = 0 |:2

4 n 2 -25n -21 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = +25 ± ( -25 ) 2 -4 · 4 · ( -21 ) 24

n1,2 = +25 ± 625 +336 8

n1,2 = +25 ± 961 8

n1 = 25 + 961 8 = 25 +31 8 = 56 8 = 7

n2 = 25 - 961 8 = 25 -31 8 = -6 8 = -0,75

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 7 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 3 Herz-Karten und 2 Kreuz-Karten. Im Kartenstapel B sind 6 Herz- und 4 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 7 Herz und 4 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 4 11 3 10 = 6 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 3 5 6 55 = 18 275

2. Möglichkeit: 6 Herz und 5 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 5 11 4 10 = 2 11

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 2 5 2 11 = 4 55

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 18 275 + 4 55 = 38 275 .