Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 10 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 4. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 14 3 13 2 12 10 11
= 1 7 1 13 1 10 11
= 10 1001

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 18 37 ; "nicht rot": 19 37 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'rot')=1- 361 1369 = 1008 1369

EreignisP
rot -> rot 324 1369
rot -> nicht rot 342 1369
nicht rot -> rot 342 1369
nicht rot -> nicht rot 361 1369

Einzel-Wahrscheinlichkeiten: rot: 18 37 ; nicht rot: 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 342 1369 )
  • 'nicht rot'-'rot' (P= 342 1369 )
  • 'rot'-'rot' (P= 324 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

342 1369 + 342 1369 + 324 1369 = 1008 1369


Kombinatorik

Beispiel:

Es findet ein Staffellauf im Biathlon der Herren statt. Der Trainer muss 4 Starter und auch die Reihenfolge der Starter nennen. In seinem Team sind 9 geeignete Kandidaten.Wie viele Startmöglichkeiten gibt es?

Lösung einblenden

Für die erste Stelle ist jede(r) Kandidat möglich. Es gibt also 9 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende Kandidat nicht mehr möglich, es gibt also nur noch 8 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 7 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 9 ⋅ 8 ⋅ 7 ⋅ 6 = 3024 Möglichkeiten.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

Oma Hilde hat 9 Nougat-, 12 Krokant- und 12 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 15 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 4 Nougateier und genau 4 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 33 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 15 der insgesamt 33 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 15 von 33 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 33 15 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 9 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 9 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen Nougateier unter den 9 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 9 Nougateier ziehen", also ( 9 4 ) Möglichkeiten.


Es gibt ( 12 7 ) verschiedene Möglichkeiten 7 Kreuzchen auf 12 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 7 gezogenen Krokanteier unter den 12 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "7 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 12 Krokanteier ziehen", also ( 12 7 ) Möglichkeiten.


Es gibt ( 12 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 12 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen Vollmilcheier unter den 12 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 12 Vollmilcheier ziehen", also ( 12 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 9 4 ) ( 12 7 ) ( 12 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "15 Ostereier aus 33 Ostereier ziehen" ( 33 15 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 9 4 ) ( 12 7 ) ( 12 4 ) ( 33 15 ) 0,0476 = 4,76%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 7 gleich großen Sektoren, die mit den Zahlen von 1 bis 7 beschriftet sind, wird 4 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl zweimal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 7 Möglichkeiten gibt, die sich mit den 7 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 7⋅7⋅...⋅7 = 74 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 4 verschiedene Zahlen auftreten.


Es gibt ( 7 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 7 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 4 Zahlen unter den 7 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 4 Zahlen von 7 möglichen anzukreuzen. Dies sind ( 7 4 ) Möglichkeiten verschiedene 4er-Pakete aus 7 Zahlen zu packen.

Bei jeder dieser ( 7 4 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 4! = 4⋅3⋅2⋅1 Möglichkeiten. (4 Möglichkeiten für das erste Feld, 3 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 7 4 ) ⋅4! = 840 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 7 4 ) ⋅4! 7⋅7⋅7⋅7 = 840 2401 0,3499 = 34,99%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 6 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen, P(r-r) = 1 3 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 6 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 6 n + 6

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "rot" beim zweiten Versuch ist dann: 5 n + 5

Die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen ist also 6 n +6 · 5 n +5 . Da diese Wahrscheinlichkeit ja 1 3 ist, gilt somit:

D=R\{ -6 ; -5 }

30 ( n +6 ) ( n +5 ) = 1 3

Wir multiplizieren den Nenner ( n +6 ) · ( n +5 ) weg!

30 ( n +6 ) · ( n +5 ) = 1 3 |⋅( ( n +6 ) · ( n +5 ) )
30 ( n +6 ) · ( n +5 ) · ( n +6 ) · ( n +5 ) = 1 3 · ( n +6 ) · ( n +5 )
30 n +6 n +6 = 1 3 ( n +6 ) ( n +5 )
30 = 1 3 ( n +6 ) ( n +5 )
30 = 1 3 n 2 + 11 3 n +10
30 = 1 3 n 2 + 11 3 n +10 |⋅ 3
90 = 3( 1 3 n 2 + 11 3 n +10 )
90 = n 2 +11n +30 | - n 2 -11n -30

- n 2 -11n +60 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = +11 ± ( -11 ) 2 -4 · ( -1 ) · 60 2( -1 )

n1,2 = +11 ± 121 +240 -2

n1,2 = +11 ± 361 -2

n1 = 11 + 361 -2 = 11 +19 -2 = 30 -2 = -15

n2 = 11 - 361 -2 = 11 -19 -2 = -8 -2 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 4 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Behälter A sind 3 rote und 3 blaue Kugeln. Im Behälter B sind 4 rote und 6 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:

1. Möglichkeit: 5 rote und 6 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) = 6 11 5 10 = 3 11

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote Kugel von Behälter A gezogen wurde:
P1 = 3 6 3 11 = 3 22

2. Möglichkeit: 4 rote und 7 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) = 7 11 6 10 = 21 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue Kugel von Behälter A gezogen wurde:
P2 = 3 6 21 55 = 21 110

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:

P = P1 + P2 = 3 22 + 21 110 = 18 55 .