Aufgabenbeispiele von Pfadregel, Kombinatorik
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 2 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?
Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'
Einzel-Wahrscheinlichkeiten :"Teiler": ; "nicht Teiler": ;
| Ereignis | P |
|---|---|
| Teiler -> Teiler -> Teiler | |
| Teiler -> Teiler -> nicht Teiler | |
| Teiler -> nicht Teiler -> Teiler | |
| Teiler -> nicht Teiler -> nicht Teiler | |
| nicht Teiler -> Teiler -> Teiler | |
| nicht Teiler -> Teiler -> nicht Teiler | |
| nicht Teiler -> nicht Teiler -> Teiler | |
| nicht Teiler -> nicht Teiler -> nicht Teiler |
Einzel-Wahrscheinlichkeiten: Teiler: ; nicht Teiler: ;
Die relevanten Pfade sind:- 'Teiler'-'Teiler'-'nicht Teiler' (P=)
- 'Teiler'-'nicht Teiler'-'Teiler' (P=)
- 'nicht Teiler'-'Teiler'-'Teiler' (P=)
- 'Teiler'-'Teiler'-'Teiler' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Kombinatorik
Beispiel:
Ein spezielles Zahlenschloss hat 5 Ringe mit jeweils 4 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?
Bei jedem der 5 'Zufallsversuche' gibt es 4 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 5 Ebenen immer 4-fach verzweigt.
Es entstehen so also 4 ⋅ 4 ⋅ 4 ⋅ 4 ⋅ 4 = 45 = 1024 Möglichkeiten.
n Richtige tippen (ohne Zurücklegen)
Beispiel:
Oma Hilde hat 11 Nougat-, 12 Krokant- und 13 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 13 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 2 Nougateier und genau 8 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 36 durchnummeriert wären.
Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 13 der insgesamt 36 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 13 von 36 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten verwenden.
Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:
Es gibt verschiedene Möglichkeiten 2 Kreuzchen auf 11 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 2 gezogenen Nougateier unter den 11 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "2 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 11 Nougateier ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 3 Kreuzchen auf 12 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 3 gezogenen Krokanteier unter den 12 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 12 Krokanteier ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 8 Kreuzchen auf 13 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 8 gezogenen Vollmilcheier unter den 13 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 13 Vollmilcheier ziehen", also Möglichkeiten.
Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ⋅ ⋅ Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "13 Ostereier aus 36 Ostereier ziehen" ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P = = ≈ 0,0067 = 0,67%
nur verschiedene (mit Zurücklegen)
Beispiel:
Ein Glücksrad mit 7 gleich großen Sektoren, die mit den Zahlen von 1 bis 7 beschriftet sind, wird 8 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass jede der 7 Zahlen dabei einmal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Anzahl der möglichen Fälle
Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 7 Möglichkeiten gibt, die sich mit den 7 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 7⋅7⋅...⋅7 = 78 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.
Anzahl der günstigen Fälle
Es gibt
Hierfür gibt es
Da ja nur Zahlen zwischen 1 und 7 möglich sind, gibt es somit
Jetzt bleiben noch 6 Felder (Drehungen), die mit den anderen 6 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen
muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 6! = 6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten.
(6 Möglichkeiten für das erste Feld, 5 Möglichkeiten für das zweite ...)
Insgesamt erhalten wir somit
Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P =
Ohne Zurücklegen rückwärts
Beispiel:
In einem Behälter sind 10 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen, P(r-r) =
Insgesamt sind also n + 10 Kugeln im Behälter.
Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit:
Wenn dann auch tatsächlich
"rot" aufgetreten ist, ist die Wahrscheinlichkeit für "rot" beim zweiten Versuch ist dann:
Die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen ist also
D=R\{
|
|
= |
|
Wir multiplizieren den Nenner
|
|
= |
|
|⋅(
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
= |
|
|⋅ 7 |
|
|
= |
|
|
|
|
= |
|
|
|
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
n1,2 =
n1,2 =
n1,2 =
n1 =
n2 =
(Alle Lösungen sind auch in der Definitionsmenge).
Es waren also 5 blaue Kugeln im Behälter.
2 Urnen
Beispiel:
In einem Kartenstapel A sind 3 Herz-Karten und 2 Kreuz-Karten. Im Kartenstapel B sind 10 Herz- und 5 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.
Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:
1. Möglichkeit: 11 Herz und 5 Kreuz
Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz
Karte von Stapel A gezogen wurde:
P1 =
2. Möglichkeit: 10 Herz und 6 Kreuz
Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz
Karte von Stapel A gezogen wurde:
P2 =
Beide Möglichkeiten zusammen:
Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:
P = P1 + P2 =
