Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 2 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 5 2 4
= 3 5 2 4
= 3 10

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 18 37 ; "nicht schwarz": 19 37 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal schwarz' alle Möglichkeiten enthalten, außer eben 2 mal 'schwarz'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'schwarz')=1- 324 1369 = 1045 1369

EreignisP
schwarz -> schwarz 324 1369
schwarz -> nicht schwarz 342 1369
nicht schwarz -> schwarz 342 1369
nicht schwarz -> nicht schwarz 361 1369

Einzel-Wahrscheinlichkeiten: schwarz: 18 37 ; nicht schwarz: 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'schwarz'-'nicht schwarz' (P= 342 1369 )
  • 'nicht schwarz'-'schwarz' (P= 342 1369 )
  • 'nicht schwarz'-'nicht schwarz' (P= 361 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

342 1369 + 342 1369 + 361 1369 = 1045 1369


Kombinatorik

Beispiel:

Eine 5-stellige Zahl soll gewürfelt werden. Dabei wird einfach 5 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden.

Lösung einblenden

Bei jedem der 5 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 5 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 ⋅ 6 ⋅ 6 = 65 = 7776 Möglichkeiten.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

Bei einer Lotterie werden aus einem Lostopf mit 45 durchnummerierten Kugeln immer 9 Gewinnerkugeln zufällig gezogen. Jeder Teilnehmer an der Lotterie tippt nun genau 9 Zahlen. Bestimme die Wahrscheinlichkeit, dass man hierbei genau 2 der 9 Kugeln zufällig richtig tippt.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 9 der insgesamt 45 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 9 von 45 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 45 9 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 9 2 ) verschiedene Möglichkeiten 2 Kreuzchen auf 9 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 2 richtig getippten unter den 9 Gewinner-Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "2 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 9 Gewinner-Kugeln ziehen", also ( 9 2 ) Möglichkeiten.

Für die Anzahl der Möglichkeiten, die 7 falsch getippten unter den 36 Nicht-Gewinner-Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "7 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 36 Nicht-Gewinner-Kugeln ziehen", also ( 36 7 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 9 2 ) ( 36 7 ) Möglichkeiten, weil ja jeder Fall der richtig getippten mit jedem Fall der falsch getippten kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "9 Kugeln aus 45 Kugeln ziehen" ( 45 9 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 9 2 ) ( 36 7 ) ( 45 9 ) 0,3391 = 33,91%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Zahlenschloss hat 6 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 4 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass eine Zahl genau 3 mal enthalten ist und alle anderen 3 Zahlen genau einmal?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 4 Möglichkeiten gibt, die sich mit den 4 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 4⋅4⋅...⋅4 = 46 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.

Anzahl der günstigen Fälle


Es gibt ( 6 3 ) verschiedene Möglichkeiten 3 Kreuzchen auf 6 Kästchen zu verteilen.
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten überlegen wir uns am besten zuerst, wie viele Möglichkeiten es für die 3 Felder (Zahlenschlossräder) gibt, auf denen die 3 gleichen Zahlen stehen.
Hierfür gibt es ( 6 3 ) Möglichkeiten.

Da ja nur Zahlen zwischen 1 und 4 möglich sind, gibt es somit ( 6 3 ) ⋅ 4 Möglichkeiten für die Belegung der 3 Felder (Zahlenschlossräder) mit gleichen Zahlen, weil ja eben jede der 4 Zahlen theoretisch 3-fach vorkommen könnte.

Jetzt bleiben noch 3 Felder (Zahlenschlossräder), die mit den anderen 3 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 3! = 3⋅2⋅1 Möglichkeiten.
(3 Möglichkeiten für das erste Feld, 2 Möglichkeiten für das zweite ...)

Insgesamt erhalten wir somit ( 6 3 ) ⋅ 4 ⋅ 3⋅2⋅1 = 480 günstige Möglichkeiten

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 6 3 ) ⋅ 4 ⋅ 3⋅2⋅1 4⋅4⋅4⋅4⋅4⋅4 = 480 4096 0,1172 = 11,72%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 2 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) = 28 45 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 2 Kugeln im Behälter.

Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit: n n + 2

Wenn dann auch tatsächlich "blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n-1 n - 1 + 2

Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also n n +2 · n -1 n +1 . Da diese Wahrscheinlichkeit ja 28 45 ist, gilt somit:

D=R\{ -2 ; -1 }

n ( n -1 ) ( n +2 ) ( n +1 ) = 28 45

Wir multiplizieren den Nenner ( n +2 ) ( n +1 ) weg!

n ( n -1 ) ( n +2 ) · ( n +1 ) = 28 45 |⋅( ( n +2 ) ( n +1 ) )
n ( n -1 ) ( n +2 ) · ( n +1 ) · ( n +2 ) ( n +1 ) = 28 45 · ( n +2 ) ( n +1 )
n · ( ( n -1 ) · 1 ) 1 = 28 45 ( n +2 ) ( n +1 )
n ( n -1 ) = 28 45 ( n +2 ) ( n +1 )
n · n + n · ( -1 ) = 28 45 ( n +2 ) ( n +1 )
n · n - n = 28 45 ( n +2 ) ( n +1 )
n 2 - n = 28 45 n 2 + 28 15 n + 56 45
n 2 - n = 28 45 n 2 + 28 15 n + 56 45 |⋅ 45
45( n 2 - n ) = 45( 28 45 n 2 + 28 15 n + 56 45 )
45 n 2 -45n = 28 n 2 +84n +56 | -28 n 2 -84n -56

17 n 2 -129n -56 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = +129 ± ( -129 ) 2 -4 · 17 · ( -56 ) 217

n1,2 = +129 ± 16641 +3808 34

n1,2 = +129 ± 20449 34

n1 = 129 + 20449 34 = 129 +143 34 = 272 34 = 8

n2 = 129 - 20449 34 = 129 -143 34 = -14 34 = - 7 17 ≈ -0.41

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 8 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 3 Herz-Karten und 2 Kreuz-Karten. Im Kartenstapel B sind 3 Herz- und 7 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 4 Herz und 7 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 7 11 6 10 = 21 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 3 5 21 55 = 63 275

2. Möglichkeit: 3 Herz und 8 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 8 11 7 10 = 28 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 2 5 28 55 = 56 275

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 63 275 + 56 275 = 119 275 .