Aufgabenbeispiele von Pfadregel, Kombinatorik
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 9 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 8 Karten der Farbe Kreuz, 2 der Farbe Pik, 4 der Farbe Herz und 6 der Farbe Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal Pik"?
Da ja ausschließlich nach 'Pik' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Pik' und 'nicht Pik'
Einzel-Wahrscheinlichkeiten :"Pik": ; "nicht Pik": ;
| Ereignis | P |
|---|---|
| Pik -> Pik | |
| Pik -> nicht Pik | |
| nicht Pik -> Pik | |
| nicht Pik -> nicht Pik |
Einzel-Wahrscheinlichkeiten: Pik: ; nicht Pik: ;
Die relevanten Pfade sind:
'Pik'-'nicht Pik' (P=)
'nicht Pik'-'Pik' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Kombinatorik
Beispiel:
Ein spezielles Zahlenschloss hat 3 Ringe mit jeweils 10 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?
Bei jedem der 3 'Zufallsversuche' gibt es 10 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 10-fach verzweigt.
Es entstehen so also 10 ⋅ 10 ⋅ 10 = 103 = 1000 Möglichkeiten.
n Richtige tippen (ohne Zurücklegen)
Beispiel:
Oma Hilde hat 11 Nougat-, 13 Krokant- und 11 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 14 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 5 Nougateier und genau 4 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 35 durchnummeriert wären.
Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 14 der insgesamt 35 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 14 von 35 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten verwenden.
Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:
Es gibt verschiedene Möglichkeiten 5 Kreuzchen auf 11 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 5 gezogenen Nougateier unter den 11 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 11 Nougateier ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 5 Kreuzchen auf 13 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 5 gezogenen Krokanteier unter den 13 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 13 Krokanteier ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 4 Kreuzchen auf 11 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 4 gezogenen Vollmilcheier unter den 11 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 11 Vollmilcheier ziehen", also Möglichkeiten.
Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ⋅ ⋅ Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "14 Ostereier aus 35 Ostereier ziehen" ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P = = ≈ 0,0846 = 8,46%
nur verschiedene (mit Zurücklegen)
Beispiel:
Ein Zahlenschloss hat 5 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 10 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl mehrfach vorkommt?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Anzahl der möglichen Fälle
Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 10 Möglichkeiten gibt, die sich mit den 10 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 10⋅10⋅...⋅10 = 105 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.
Anzahl der günstigen Fälle
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 5 verschiedene Zahlen auftreten.
Es gibt
Bei jeder dieser
Insgesamt kommen wir so auf
Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P =
Ohne Zurücklegen rückwärts
Beispiel:
In einem Behälter sind 6 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen, P(r-r) =
Insgesamt sind also n + 6 Kugeln im Behälter.
Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit:
Wenn dann auch tatsächlich
"rot" aufgetreten ist, ist die Wahrscheinlichkeit für "rot" beim zweiten Versuch ist dann:
Die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen ist also
D=R\{
|
|
= |
|
Wir multiplizieren den Nenner
|
|
= |
|
|⋅(
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
= |
|
|⋅ 3 |
|
|
= |
|
|
|
|
= |
|
|
|
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
n1,2 =
n1,2 =
n1,2 =
n1 =
n2 =
(Alle Lösungen sind auch in der Definitionsmenge).
Es waren also 4 blaue Kugeln im Behälter.
2 Urnen
Beispiel:
In einem Kartenstapel A sind 2 Herz-Karten und 3 Kreuz-Karten. Im Kartenstapel B sind 5 Herz- und 5 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.
Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:
1. Möglichkeit: 6 Herz und 5 Kreuz
Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz
Karte von Stapel A gezogen wurde:
P1 =
2. Möglichkeit: 5 Herz und 6 Kreuz
Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz
Karte von Stapel A gezogen wurde:
P2 =
Beide Möglichkeiten zusammen:
Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:
P = P1 + P2 =
