Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 9 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 12 9 11
= 3 4 3 11
= 9 44

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 3 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: deutsch: 1 4 ; andere: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'deutsch'-'deutsch' (P= 1 140 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 140 = 1 140


Kombinatorik

Beispiel:

Eine Mathelehrerin verlost unter den 6 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 4 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 4er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede(r/s) SchülerIn möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 6 ⋅ 5 ⋅ 4 ⋅ 3 = 360 Möglichkeiten, die 6 Möglichkeiten (SchülerIn) auf die 4 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welche Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 360 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 360 24 = 15 Möglichkeiten für 4er-Gruppen, die aus 6 Elementen (SchülerIn) gebildet werden.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 13 blaue, 10 gelbe und 11 grüne Kugeln. Es werden 10 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 2 Kugeln blau und genau 4 Kugeln grün sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 34 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 10 der insgesamt 34 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 10 von 34 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 34 10 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 13 2 ) verschiedene Möglichkeiten 2 Kreuzchen auf 13 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 2 gezogenen blauen unter den 13 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "2 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 13 blauen Kugeln ziehen", also ( 13 2 ) Möglichkeiten.


Es gibt ( 10 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 10 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen gelben unter den 10 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 10 gelben Kugeln ziehen", also ( 10 4 ) Möglichkeiten.


Es gibt ( 11 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen grünen unter den 11 grünen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 11 grünen Kugeln ziehen", also ( 11 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 13 2 ) ( 10 4 ) ( 11 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben uns mit jedem Fall der gezogenen grünen kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "10 Kugeln aus 34 Kugeln ziehen" ( 34 10 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 13 2 ) ( 10 4 ) ( 11 4 ) ( 34 10 ) 0,0412 = 4,12%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 5 gleich großen Sektoren, die mit den Zahlen von 1 bis 5 beschriftet sind, wird 6 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass jede der 5 Zahlen dabei einmal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 5 Möglichkeiten gibt, die sich mit den 5 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 5⋅5⋅...⋅5 = 56 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle


Es gibt ( 6 2 ) verschiedene Möglichkeiten 2 Kreuzchen auf 6 Kästchen zu verteilen.
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten überlegen wir uns am besten zuerst, wie viele Möglichkeiten es für die beiden Felder (Drehungen) gibt, auf denen zwei gleiche Zahlen stehen. (Da jede Zahl mindestens einmal vorkommt, und es aber mehr Drehungen als Zahlen gibt, muss ja eine Zahl bei zwei Drehungen stehen).
Hierfür gibt es ( 6 2 ) Möglichkeiten.

Da ja nur Zahlen zwischen 1 und 5 möglich sind, gibt es somit ( 6 2 ) ⋅ 5 Möglichkeiten für die Belegung der beiden Felder mit gleichen Zahlen, weil ja eben jede der 5 Zahlen theoretisch doppelt vorkommen könnte.

Jetzt bleiben noch 4 Felder (Drehungen), die mit den anderen 4 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 4! = 4⋅3⋅2⋅1 Möglichkeiten.
(4 Möglichkeiten für das erste Feld, 3 Möglichkeiten für das zweite ...)

Insgesamt erhalten wir somit ( 6 2 ) ⋅ 5 ⋅ 4⋅3⋅2⋅1 = 1800 günstige Möglichkeiten

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 6 2 ) ⋅ 5 ⋅ 4⋅3⋅2⋅1 5⋅5⋅5⋅5⋅5⋅5 = 1800 15625 0,1152 = 11,52%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 7 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen, P(r-r) = 7 15 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 7 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 7 n + 7

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "rot" beim zweiten Versuch ist dann: 6 n + 6

Die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen ist also 7 n +7 · 6 n +6 . Da diese Wahrscheinlichkeit ja 7 15 ist, gilt somit:

D=R\{ -7 ; -6 }

42 ( n +7 ) ( n +6 ) = 7 15

Wir multiplizieren den Nenner ( n +7 ) · ( n +6 ) weg!

42 ( n +7 ) · ( n +6 ) = 7 15 |⋅( ( n +7 ) · ( n +6 ) )
42 ( n +7 ) · ( n +6 ) · ( n +7 ) · ( n +6 ) = 7 15 · ( n +7 ) · ( n +6 )
42 n +7 n +7 = 7 15 ( n +7 ) ( n +6 )
42 = 7 15 ( n +7 ) ( n +6 )
42 = 7 15 n 2 + 91 15 n + 98 5
42 = 7 15 n 2 + 91 15 n + 98 5 |⋅ 15
630 = 15( 7 15 n 2 + 91 15 n + 98 5 )
630 = 7 n 2 +91n +294 | -7 n 2 -91n -294
-7 n 2 -91n +336 = 0 |:7

- n 2 -13n +48 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = +13 ± ( -13 ) 2 -4 · ( -1 ) · 48 2( -1 )

n1,2 = +13 ± 169 +192 -2

n1,2 = +13 ± 361 -2

n1 = 13 + 361 -2 = 13 +19 -2 = 32 -2 = -16

n2 = 13 - 361 -2 = 13 -19 -2 = -6 -2 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 3 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 3 Herz-Karten und 2 Kreuz-Karten. Im Kartenstapel B sind 6 Herz- und 4 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 7 Herz und 4 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 4 11 3 10 = 6 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 3 5 6 55 = 18 275

2. Möglichkeit: 6 Herz und 5 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 5 11 4 10 = 2 11

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 2 5 2 11 = 4 55

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 18 275 + 4 55 = 38 275 .