Aufgabenbeispiele von Pfadregel, Kombinatorik
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 5 rote und 3 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind 4 rote und 6 blaue Kugeln. Es wird 3 mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
| Ereignis | P |
|---|---|
| blau -> blau -> blau | |
| blau -> blau -> nicht blau | |
| blau -> nicht blau -> blau | |
| blau -> nicht blau -> nicht blau | |
| nicht blau -> blau -> blau | |
| nicht blau -> blau -> nicht blau | |
| nicht blau -> nicht blau -> blau | |
| nicht blau -> nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: blau: ; nicht blau: ;
Die relevanten Pfade sind:- 'blau'-'blau'-'nicht blau' (P=)
- 'blau'-'nicht blau'-'blau' (P=)
- 'nicht blau'-'blau'-'blau' (P=)
- 'blau'-'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Kombinatorik
Beispiel:
In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 24 Schüler, in der 8b 21 Schüler und in der in der 8c 27 Schüler hat.
Für die Kategorie '8a' gibt es 24 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 21 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 24 ⋅ 21 = 504 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 27 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 24 ⋅ 21 ⋅ 27 = 13608 Möglichkeiten ergeben.
n Richtige tippen (ohne Zurücklegen)
Beispiel:
Oma Hilde hat 9 Nougat-, 10 Krokant- und 15 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 13 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 3 Nougateier und genau 4 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 34 durchnummeriert wären.
Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 13 der insgesamt 34 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 13 von 34 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten verwenden.
Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:
Es gibt verschiedene Möglichkeiten 3 Kreuzchen auf 9 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 3 gezogenen Nougateier unter den 9 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 9 Nougateier ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 6 Kreuzchen auf 10 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 6 gezogenen Krokanteier unter den 10 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "6 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 10 Krokanteier ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 4 Kreuzchen auf 15 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 4 gezogenen Vollmilcheier unter den 15 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 15 Vollmilcheier ziehen", also Möglichkeiten.
Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ⋅ ⋅ Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "13 Ostereier aus 34 Ostereier ziehen" ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P = = ≈ 0,0259 = 2,59%
nur verschiedene (mit Zurücklegen)
Beispiel:
Ein Glücksrad mit 12 gleich großen Sektoren, die mit den Zahlen von 1 bis 12 beschriftet sind, wird 7 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl zweimal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Anzahl der möglichen Fälle
Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 12 Möglichkeiten gibt, die sich mit den 12 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 12⋅12⋅...⋅12 = 127 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.
Anzahl der günstigen Fälle
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 7 verschiedene Zahlen auftreten.
Es gibt
Bei jeder dieser
Insgesamt kommen wir so auf
Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P =
Ohne Zurücklegen rückwärts
Beispiel:
In einem Behälter sind 10 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) =
Insgesamt sind also n + 10 Kugeln im Behälter.
Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit:
Wenn dann auch tatsächlich
"blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann:
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also
D=R\{
|
|
= |
|
Wir multiplizieren den Nenner
|
|
= |
|
|⋅(
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
= |
|
|⋅ 21 |
|
|
= |
|
|
|
|
= |
|
|
|
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
n1,2 =
n1,2 =
n1,2 =
n1 =
n2 =
(Alle Lösungen sind auch in der Definitionsmenge).
Es waren also 5 blaue Kugeln im Behälter.
2 Urnen
Beispiel:
In einem Behälter A sind 3 rote und 3 blaue Kugeln. Im Behälter B sind 2 rote und 8 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.
Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:
1. Möglichkeit: 3 rote und 8 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote
Kugel von Behälter A gezogen wurde:
P1 =
2. Möglichkeit: 2 rote und 9 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue
Kugel von Behälter A gezogen wurde:
P2 =
Beide Möglichkeiten zusammen:
Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:
P = P1 + P2 =
