Aufgabenbeispiele von Pfadregel, Kombinatorik
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
Ziehen mit Zurücklegen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Da ja ausschließlich nach 'C' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'C' und 'nicht C'
Einzel-Wahrscheinlichkeiten :"C": ; "nicht C": ;
| Ereignis | P |
|---|---|
| C -> C | |
| C -> nicht C | |
| nicht C -> C | |
| nicht C -> nicht C |
Einzel-Wahrscheinlichkeiten: C: ; nicht C: ;
Die relevanten Pfade sind:- 'C'-'C' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Kombinatorik
Beispiel:
Die Sportlehrerin Frau Hertz braucht für eine Demonstration 3 Schülerinnen. Diese möchte sie zufällig aus der 24-köpfigen Sportgruppe losen. Wie viele verschiedene 3er-Gruppen sind so möglich?
Für die erste Stelle ist jede(r/s) Schülerin möglich. Es gibt also 24 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende Schülerin nicht mehr möglich, es gibt also nur noch 23 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 22 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also 24 ⋅ 23 ⋅ 22 = 12144 Möglichkeiten, die 24 Möglichkeiten (Schülerin) auf die 3 "Ziehungen" (geloste) zu verteilen.
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 3er-Gruppe drin ist, nicht an welche Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 3er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 3er-Gruppe möglich. Es gibt also 3 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 2 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 1 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 3 ⋅ 2 ⋅ 1 = 6 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 3er-Gruppe.
Wir müssen deswegen die 12144 Möglichkeiten für nach Reihenfolge sortierte 3er-Gruppen durch die 6 Möglichkeiten, die 3er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 2024 Möglichkeiten für 3er-Gruppen, die aus 24 Elementen (Schülerin) gebildet werden.
n Richtige tippen (ohne Zurücklegen)
Beispiel:
In einem Behälter sind 9 blaue, 13 gelbe und 11 grüne Kugeln. Es werden 13 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 3 Kugeln blau und genau 4 Kugeln grün sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 33 durchnummeriert wären.
Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 13 der insgesamt 33 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 13 von 33 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten verwenden.
Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:
Es gibt verschiedene Möglichkeiten 3 Kreuzchen auf 9 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 3 gezogenen blauen unter den 9 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 9 blauen Kugeln ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 6 Kreuzchen auf 13 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 6 gezogenen gelben unter den 13 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "6 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 13 gelben Kugeln ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 4 Kreuzchen auf 11 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 4 gezogenen grünen unter den 11 grünen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 11 grünen Kugeln ziehen", also Möglichkeiten.
Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ⋅ ⋅ Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben uns mit jedem Fall der gezogenen grünen kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "13 Kugeln aus 33 Kugeln ziehen" ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P = = ≈ 0,083 = 8,3%
nur verschiedene (mit Zurücklegen)
Beispiel:
Ein Glücksrad mit 5 gleich großen Sektoren, die mit den Zahlen von 1 bis 5 beschriftet sind, wird 6 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass jede der 5 Zahlen dabei einmal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Anzahl der möglichen Fälle
Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 5 Möglichkeiten gibt, die sich mit den 5 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 5⋅5⋅...⋅5 = 56 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.
Anzahl der günstigen Fälle
Es gibt
Hierfür gibt es
Da ja nur Zahlen zwischen 1 und 5 möglich sind, gibt es somit
Jetzt bleiben noch 4 Felder (Drehungen), die mit den anderen 4 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen
muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 4! = 4⋅3⋅2⋅1 Möglichkeiten.
(4 Möglichkeiten für das erste Feld, 3 Möglichkeiten für das zweite ...)
Insgesamt erhalten wir somit
Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P =
Ohne Zurücklegen rückwärts
Beispiel:
In einem Behälter sind 5 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen, P(r-r) =
Insgesamt sind also n + 5 Kugeln im Behälter.
Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit:
Wenn dann auch tatsächlich
"rot" aufgetreten ist, ist die Wahrscheinlichkeit für "rot" beim zweiten Versuch ist dann:
Die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen ist also
D=R\{
|
|
= |
|
Wir multiplizieren den Nenner
|
|
= |
|
|⋅(
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
= |
|
|⋅ 9 |
|
|
= |
|
|
|
|
= |
|
|
|
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
n1,2 =
n1,2 =
n1,2 =
n1 =
n2 =
(Alle Lösungen sind auch in der Definitionsmenge).
Es waren also 5 blaue Kugeln im Behälter.
2 Urnen
Beispiel:
In einem Behälter A sind 3 rote und 3 blaue Kugeln. Im Behälter B sind 4 rote und 6 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.
Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:
1. Möglichkeit: 5 rote und 6 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote
Kugel von Behälter A gezogen wurde:
P1 =
2. Möglichkeit: 4 rote und 7 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue
Kugel von Behälter A gezogen wurde:
P2 =
Beide Möglichkeiten zusammen:
Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:
P = P1 + P2 =
