Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 2 rote und 3 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 5 1 4 3 3
= 1 5 1 2 3 3
= 1 10

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie in der Abbildung rechts wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit für "höchstens 1 mal B"?

Lösung einblenden

Da ja ausschließlich nach 'B' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'B' und 'nicht B'

Einzel-Wahrscheinlichkeiten :"B": 1 4 ; "nicht B": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal B' alle Möglichkeiten enthalten, außer eben 2 mal 'B'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'B')=1- 1 16 = 15 16

EreignisP
B -> B 1 16
B -> nicht B 3 16
nicht B -> B 3 16
nicht B -> nicht B 9 16

Einzel-Wahrscheinlichkeiten: B: 1 4 ; nicht B: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'B'-'nicht B' (P= 3 16 )
  • 'nicht B'-'B' (P= 3 16 )
  • 'nicht B'-'nicht B' (P= 9 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 16 + 3 16 + 9 16 = 15 16


Kombinatorik

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 6 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 7 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 6 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 6 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 7 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 6 ⋅ 7 = 42 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 6 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 6 ⋅ 7 ⋅ 6 = 252 Möglichkeiten ergeben.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 12 blaue und 18 gelbe Kugeln. Es werden 11 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 3 Kugeln blau sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 30 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 11 der insgesamt 30 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 11 von 30 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 30 11 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 12 3 ) verschiedene Möglichkeiten 3 Kreuzchen auf 12 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 3 gezogenen blauen unter den 12 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 12 blauen Kugeln ziehen", also ( 12 3 ) Möglichkeiten.


Es gibt ( 18 8 ) verschiedene Möglichkeiten 8 Kreuzchen auf 18 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 8 gezogenen gelben unter den 18 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 18 gelben Kugeln ziehen", also ( 18 8 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 12 3 ) ( 18 8 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "11 Kugeln aus 30 Kugeln ziehen" ( 30 11 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 12 3 ) ( 18 8 ) ( 30 11 ) = 9626760 54627300 0,1762 = 17,62%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 6 gleich großen Sektoren, die mit den Zahlen von 1 bis 6 beschriftet sind, wird 7 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass jede der 6 Zahlen dabei einmal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 6 Möglichkeiten gibt, die sich mit den 6 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 6⋅6⋅...⋅6 = 67 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle


Es gibt ( 7 2 ) verschiedene Möglichkeiten 2 Kreuzchen auf 7 Kästchen zu verteilen.
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten überlegen wir uns am besten zuerst, wie viele Möglichkeiten es für die beiden Felder (Drehungen) gibt, auf denen zwei gleiche Zahlen stehen. (Da jede Zahl mindestens einmal vorkommt, und es aber mehr Drehungen als Zahlen gibt, muss ja eine Zahl bei zwei Drehungen stehen).
Hierfür gibt es ( 7 2 ) Möglichkeiten.

Da ja nur Zahlen zwischen 1 und 6 möglich sind, gibt es somit ( 7 2 ) ⋅ 6 Möglichkeiten für die Belegung der beiden Felder mit gleichen Zahlen, weil ja eben jede der 6 Zahlen theoretisch doppelt vorkommen könnte.

Jetzt bleiben noch 5 Felder (Drehungen), die mit den anderen 5 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 5! = 5⋅4⋅3⋅2⋅1 Möglichkeiten.
(5 Möglichkeiten für das erste Feld, 4 Möglichkeiten für das zweite ...)

Insgesamt erhalten wir somit ( 7 2 ) ⋅ 6 ⋅ 5⋅4⋅3⋅2⋅1 = 15120 günstige Möglichkeiten

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 7 2 ) ⋅ 6 ⋅ 5⋅4⋅3⋅2⋅1 6⋅6⋅6⋅6⋅6⋅6⋅6 = 15120 279936 0,054 = 5,4%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 2 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) = 28 45 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 2 Kugeln im Behälter.

Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit: n n + 2

Wenn dann auch tatsächlich "blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n-1 n - 1 + 2

Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also n n +2 · n -1 n +1 . Da diese Wahrscheinlichkeit ja 28 45 ist, gilt somit:

D=R\{ -2 ; -1 }

n ( n -1 ) ( n +2 ) ( n +1 ) = 28 45

Wir multiplizieren den Nenner ( n +2 ) ( n +1 ) weg!

n ( n -1 ) ( n +2 ) · ( n +1 ) = 28 45 |⋅( ( n +2 ) ( n +1 ) )
n ( n -1 ) ( n +2 ) · ( n +1 ) · ( n +2 ) ( n +1 ) = 28 45 · ( n +2 ) ( n +1 )
n · ( ( n -1 ) · 1 ) 1 = 28 45 ( n +2 ) ( n +1 )
n ( n -1 ) = 28 45 ( n +2 ) ( n +1 )
n · n + n · ( -1 ) = 28 45 ( n +2 ) ( n +1 )
n · n - n = 28 45 ( n +2 ) ( n +1 )
n 2 - n = 28 45 n 2 + 28 15 n + 56 45
n 2 - n = 28 45 n 2 + 28 15 n + 56 45 |⋅ 45
45( n 2 - n ) = 45( 28 45 n 2 + 28 15 n + 56 45 )
45 n 2 -45n = 28 n 2 +84n +56 | -28 n 2 -84n -56

17 n 2 -129n -56 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = +129 ± ( -129 ) 2 -4 · 17 · ( -56 ) 217

n1,2 = +129 ± 16641 +3808 34

n1,2 = +129 ± 20449 34

n1 = 129 + 20449 34 = 129 +143 34 = 272 34 = 8

n2 = 129 - 20449 34 = 129 -143 34 = -14 34 = - 7 17 ≈ -0.41

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 8 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 3 Herz-Karten und 3 Kreuz-Karten. Im Kartenstapel B sind 8 Herz- und 4 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 9 Herz und 4 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 4 13 3 12 = 1 13

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 3 6 1 13 = 1 26

2. Möglichkeit: 8 Herz und 5 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 5 13 4 12 = 5 39

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 3 6 5 39 = 5 78

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 1 26 + 5 78 = 4 39 .