Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 18 37 ; "nicht schwarz": 19 37 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal schwarz' alle Möglichkeiten enthalten, außer eben 2 mal 'schwarz'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'schwarz')=1- 324 1369 = 1045 1369

EreignisP
schwarz -> schwarz 324 1369
schwarz -> nicht schwarz 342 1369
nicht schwarz -> schwarz 342 1369
nicht schwarz -> nicht schwarz 361 1369

Einzel-Wahrscheinlichkeiten: schwarz: 18 37 ; nicht schwarz: 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'schwarz'-'nicht schwarz' (P= 342 1369 )
  • 'nicht schwarz'-'schwarz' (P= 342 1369 )
  • 'nicht schwarz'-'nicht schwarz' (P= 361 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

342 1369 + 342 1369 + 361 1369 = 1045 1369


Kombinatorik

Beispiel:

Petra hat sich ein 5-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 5 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 5 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120 Möglichkeiten.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 11 blaue, 10 gelbe und 15 grüne Kugeln. Es werden 14 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 3 Kugeln blau und genau 4 Kugeln grün sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 36 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 14 der insgesamt 36 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 14 von 36 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 36 14 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 11 3 ) verschiedene Möglichkeiten 3 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 3 gezogenen blauen unter den 11 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 11 blauen Kugeln ziehen", also ( 11 3 ) Möglichkeiten.


Es gibt ( 10 7 ) verschiedene Möglichkeiten 7 Kreuzchen auf 10 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 7 gezogenen gelben unter den 10 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "7 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 10 gelben Kugeln ziehen", also ( 10 7 ) Möglichkeiten.


Es gibt ( 15 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 15 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen grünen unter den 15 grünen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 15 grünen Kugeln ziehen", also ( 15 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 11 3 ) ( 10 7 ) ( 15 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben uns mit jedem Fall der gezogenen grünen kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "14 Kugeln aus 36 Kugeln ziehen" ( 36 14 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 11 3 ) ( 10 7 ) ( 15 4 ) ( 36 14 ) 0,0071 = 0,71%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 7 gleich großen Sektoren, die mit den Zahlen von 1 bis 7 beschriftet sind, wird 8 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass jede der 7 Zahlen dabei einmal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 7 Möglichkeiten gibt, die sich mit den 7 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 7⋅7⋅...⋅7 = 78 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle


Es gibt ( 8 2 ) verschiedene Möglichkeiten 2 Kreuzchen auf 8 Kästchen zu verteilen.
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten überlegen wir uns am besten zuerst, wie viele Möglichkeiten es für die beiden Felder (Drehungen) gibt, auf denen zwei gleiche Zahlen stehen. (Da jede Zahl mindestens einmal vorkommt, und es aber mehr Drehungen als Zahlen gibt, muss ja eine Zahl bei zwei Drehungen stehen).
Hierfür gibt es ( 8 2 ) Möglichkeiten.

Da ja nur Zahlen zwischen 1 und 7 möglich sind, gibt es somit ( 8 2 ) ⋅ 7 Möglichkeiten für die Belegung der beiden Felder mit gleichen Zahlen, weil ja eben jede der 7 Zahlen theoretisch doppelt vorkommen könnte.

Jetzt bleiben noch 6 Felder (Drehungen), die mit den anderen 6 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 6! = 6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten.
(6 Möglichkeiten für das erste Feld, 5 Möglichkeiten für das zweite ...)

Insgesamt erhalten wir somit ( 8 2 ) ⋅ 7 ⋅ 6⋅5⋅4⋅3⋅2⋅1 = 141120 günstige Möglichkeiten

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 8 2 ) ⋅ 7 ⋅ 6⋅5⋅4⋅3⋅2⋅1 7⋅7⋅7⋅7⋅7⋅7⋅7⋅7 = 141120 5764801 0,0245 = 2,45%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 8 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen, P(r-r) = 14 33 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 8 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 8 n + 8

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "rot" beim zweiten Versuch ist dann: 7 n + 7

Die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen ist also 8 n +8 · 7 n +7 . Da diese Wahrscheinlichkeit ja 14 33 ist, gilt somit:

D=R\{ -8 ; -7 }

56 ( n +8 ) ( n +7 ) = 14 33

Wir multiplizieren den Nenner ( n +8 ) · ( n +7 ) weg!

56 ( n +8 ) · ( n +7 ) = 14 33 |⋅( ( n +8 ) · ( n +7 ) )
56 ( n +8 ) · ( n +7 ) · ( n +8 ) · ( n +7 ) = 14 33 · ( n +8 ) · ( n +7 )
56 n +8 n +8 = 14 33 ( n +8 ) ( n +7 )
56 = 14 33 ( n +8 ) ( n +7 )
56 = 14 33 n 2 + 70 11 n + 784 33
56 = 14 33 n 2 + 70 11 n + 784 33 |⋅ 33
1848 = 33( 14 33 n 2 + 70 11 n + 784 33 )
1848 = 14 n 2 +210n +784 | -14 n 2 -210n -784
-14 n 2 -210n +1064 = 0 |:14

- n 2 -15n +76 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = +15 ± ( -15 ) 2 -4 · ( -1 ) · 76 2( -1 )

n1,2 = +15 ± 225 +304 -2

n1,2 = +15 ± 529 -2

n1 = 15 + 529 -2 = 15 +23 -2 = 38 -2 = -19

n2 = 15 - 529 -2 = 15 -23 -2 = -8 -2 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 4 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 3 Herz-Karten und 2 Kreuz-Karten. Im Kartenstapel B sind 4 Herz- und 6 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 5 Herz und 6 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 6 11 5 10 = 3 11

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 3 5 3 11 = 9 55

2. Möglichkeit: 4 Herz und 7 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 7 11 6 10 = 21 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 2 5 21 55 = 42 275

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 9 55 + 42 275 = 87 275 .