Aufgabenbeispiele von Pfadregel, Kombinatorik
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 4 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 1 -> 5 | |
| 1 -> 6 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 2 -> 5 | |
| 2 -> 6 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 3 -> 5 | |
| 3 -> 6 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 | |
| 4 -> 5 | |
| 4 -> 6 | |
| 5 -> 1 | |
| 5 -> 2 | |
| 5 -> 3 | |
| 5 -> 4 | |
| 5 -> 5 | |
| 5 -> 6 | |
| 6 -> 1 | |
| 6 -> 2 | |
| 6 -> 3 | |
| 6 -> 4 | |
| 6 -> 5 | |
| 6 -> 6 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ; 5: ; 6: ;
Die relevanten Pfade sind:- '1'-'3' (P=)
- '3'-'1' (P=)
- '2'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Kombinatorik
Beispiel:
Petra hat sich ein 8-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 8 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?
Für die erste Stelle ist jede(r) möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 40320 Möglichkeiten.
n Richtige tippen (ohne Zurücklegen)
Beispiel:
Oma Hilde hat 12 Nougat-, 13 Krokant- und 11 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 11 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 2 Nougateier und genau 4 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 36 durchnummeriert wären.
Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 11 der insgesamt 36 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 11 von 36 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten verwenden.
Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:
Es gibt verschiedene Möglichkeiten 2 Kreuzchen auf 12 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 2 gezogenen Nougateier unter den 12 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "2 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 12 Nougateier ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 5 Kreuzchen auf 13 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 5 gezogenen Krokanteier unter den 13 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 13 Krokanteier ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 4 Kreuzchen auf 11 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 4 gezogenen Vollmilcheier unter den 11 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 11 Vollmilcheier ziehen", also Möglichkeiten.
Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ⋅ ⋅ Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "11 Ostereier aus 36 Ostereier ziehen" ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P = = ≈ 0,0467 = 4,67%
nur verschiedene (mit Zurücklegen)
Beispiel:
Ein Zahlenschloss hat 8 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 7 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass darin alle 7 Zahlen enthalten sind?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Anzahl der möglichen Fälle
Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 7 Möglichkeiten gibt, die sich mit den 7 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 7⋅7⋅...⋅7 = 78 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.
Anzahl der günstigen Fälle
Es gibt
Hierfür gibt es
Da ja nur Zahlen zwischen 1 und 7 möglich sind, gibt es somit
Jetzt bleiben noch 6 Felder (Zahlenschlossräder), die mit den anderen 6 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen
muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 6! = 6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten.
(6 Möglichkeiten für das erste Feld, 5 Möglichkeiten für das zweite ...)
Insgesamt erhalten wir somit
Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P =
Ohne Zurücklegen rückwärts
Beispiel:
In einem Behälter sind 10 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen, P(r-r) =
Insgesamt sind also n + 10 Kugeln im Behälter.
Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit:
Wenn dann auch tatsächlich
"rot" aufgetreten ist, ist die Wahrscheinlichkeit für "rot" beim zweiten Versuch ist dann:
Die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen ist also
D=R\{
|
|
= |
|
Wir multiplizieren den Nenner
|
|
= |
|
|⋅(
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
= |
|
|⋅ 7 |
|
|
= |
|
|
|
|
= |
|
|
|
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
n1,2 =
n1,2 =
n1,2 =
n1 =
n2 =
(Alle Lösungen sind auch in der Definitionsmenge).
Es waren also 5 blaue Kugeln im Behälter.
2 Urnen
Beispiel:
In einem Behälter A sind 3 rote und 3 blaue Kugeln. Im Behälter B sind 10 rote und 5 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.
Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:
1. Möglichkeit: 11 rote und 5 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote
Kugel von Behälter A gezogen wurde:
P1 =
2. Möglichkeit: 10 rote und 6 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue
Kugel von Behälter A gezogen wurde:
P2 =
Beide Möglichkeiten zusammen:
Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:
P = P1 + P2 =
