Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 1 3
= 1 4 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 4 Asse, 4 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "höchstens 1 mal König"?

Lösung einblenden

Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'

Einzel-Wahrscheinlichkeiten :"König": 2 5 ; "nicht König": 3 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal König' alle Möglichkeiten enthalten, außer eben 2 mal 'König'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'König')=1- 2 15 = 13 15

EreignisP
König -> König 2 15
König -> nicht König 4 15
nicht König -> König 4 15
nicht König -> nicht König 1 3

Einzel-Wahrscheinlichkeiten: König: 2 5 ; nicht König: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'König'-'nicht König' (P= 4 15 )
'nicht König'-'König' (P= 4 15 )
'nicht König'-'nicht König' (P= 1 3 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 15 + 4 15 + 1 3 = 13 15


Kombinatorik

Beispiel:

Eine Mathelehrerin verlost unter den 8 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 5 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 5er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede(r/s) SchülerIn möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 = 6720 Möglichkeiten, die 8 Möglichkeiten (SchülerIn) auf die 5 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welche Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 6720 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 6720 120 = 56 Möglichkeiten für 5er-Gruppen, die aus 8 Elementen (SchülerIn) gebildet werden.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 12 blaue, 12 gelbe und 16 grüne Kugeln. Es werden 11 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 4 Kugeln blau und genau 4 Kugeln grün sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 40 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 11 der insgesamt 40 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 11 von 40 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 40 11 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 12 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 12 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen blauen unter den 12 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 12 blauen Kugeln ziehen", also ( 12 4 ) Möglichkeiten.


Es gibt ( 12 3 ) verschiedene Möglichkeiten 3 Kreuzchen auf 12 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 3 gezogenen gelben unter den 12 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 12 gelben Kugeln ziehen", also ( 12 3 ) Möglichkeiten.


Es gibt ( 16 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 16 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen grünen unter den 16 grünen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 16 grünen Kugeln ziehen", also ( 16 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 12 4 ) ( 12 3 ) ( 16 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben uns mit jedem Fall der gezogenen grünen kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "11 Kugeln aus 40 Kugeln ziehen" ( 40 11 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 12 4 ) ( 12 3 ) ( 16 4 ) ( 40 11 ) 0,0857 = 8,57%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 6 gleich großen Sektoren, die mit den Zahlen von 1 bis 6 beschriftet sind, wird 4 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl zweimal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 6 Möglichkeiten gibt, die sich mit den 6 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 6⋅6⋅...⋅6 = 64 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 4 verschiedene Zahlen auftreten.


Es gibt ( 6 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 6 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 4 Zahlen unter den 6 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 4 Zahlen von 6 möglichen anzukreuzen. Dies sind ( 6 4 ) Möglichkeiten verschiedene 4er-Pakete aus 6 Zahlen zu packen.

Bei jeder dieser ( 6 4 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 4! = 4⋅3⋅2⋅1 Möglichkeiten. (4 Möglichkeiten für das erste Feld, 3 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 6 4 ) ⋅4! = 360 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 6 4 ) ⋅4! 6⋅6⋅6⋅6 = 360 1296 0,2778 = 27,78%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 2 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) = 28 45 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 2 Kugeln im Behälter.

Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit: n n + 2

Wenn dann auch tatsächlich "blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n-1 n - 1 + 2

Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also n n +2 · n -1 n +1 . Da diese Wahrscheinlichkeit ja 28 45 ist, gilt somit:

D=R\{ -2 ; -1 }

n ( n -1 ) ( n +2 ) ( n +1 ) = 28 45

Wir multiplizieren den Nenner ( n +2 ) ( n +1 ) weg!

n ( n -1 ) ( n +2 ) · ( n +1 ) = 28 45 |⋅( ( n +2 ) ( n +1 ) )
n ( n -1 ) ( n +2 ) · ( n +1 ) · ( n +2 ) ( n +1 ) = 28 45 · ( n +2 ) ( n +1 )
n · ( ( n -1 ) · 1 ) 1 = 28 45 ( n +2 ) ( n +1 )
n ( n -1 ) = 28 45 ( n +2 ) ( n +1 )
n · n + n · ( -1 ) = 28 45 ( n +2 ) ( n +1 )
n · n - n = 28 45 ( n +2 ) ( n +1 )
n 2 - n = 28 45 n 2 + 28 15 n + 56 45
n 2 - n = 28 45 n 2 + 28 15 n + 56 45 |⋅ 45
45( n 2 - n ) = 45( 28 45 n 2 + 28 15 n + 56 45 )
45 n 2 -45n = 28 n 2 +84n +56 | -28 n 2 -84n -56

17 n 2 -129n -56 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = +129 ± ( -129 ) 2 -4 · 17 · ( -56 ) 217

n1,2 = +129 ± 16641 +3808 34

n1,2 = +129 ± 20449 34

n1 = 129 + 20449 34 = 129 +143 34 = 272 34 = 8

n2 = 129 - 20449 34 = 129 -143 34 = -14 34 = - 7 17 ≈ -0.41

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 8 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 3 Herz-Karten und 2 Kreuz-Karten. Im Kartenstapel B sind 9 Herz- und 3 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 10 Herz und 3 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 3 13 2 12 = 1 26

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 3 5 1 26 = 3 130

2. Möglichkeit: 9 Herz und 4 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 4 13 3 12 = 1 13

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 2 5 1 13 = 2 65

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 3 130 + 2 65 = 7 130 .