Aufgabenbeispiele von Pfadregel, Kombinatorik
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 8 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal schwarz"?
Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'
Einzel-Wahrscheinlichkeiten :"schwarz": ; "nicht schwarz": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal schwarz' alle Möglichkeiten enthalten, außer eben 2 mal 'schwarz'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'schwarz')=1- =
| Ereignis | P |
|---|---|
| schwarz -> schwarz | |
| schwarz -> nicht schwarz | |
| nicht schwarz -> schwarz | |
| nicht schwarz -> nicht schwarz |
Einzel-Wahrscheinlichkeiten: schwarz: ; nicht schwarz: ;
Die relevanten Pfade sind:- 'schwarz'-'nicht schwarz' (P=)
- 'nicht schwarz'-'schwarz' (P=)
- 'nicht schwarz'-'nicht schwarz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Kombinatorik
Beispiel:
Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 6 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 6 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 8 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.
Für die Kategorie 'Vollmilch' gibt es 6 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 6 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 6 ⋅ 6 = 36 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 8 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 6 ⋅ 6 ⋅ 8 = 288 Möglichkeiten ergeben.
n Richtige tippen (ohne Zurücklegen)
Beispiel:
In einem Behälter sind 8 blaue und 14 gelbe Kugeln. Es werden 10 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 2 Kugeln blau sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 22 durchnummeriert wären.
Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 10 der insgesamt 22 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 10 von 22 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten verwenden.
Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:
Es gibt verschiedene Möglichkeiten 2 Kreuzchen auf 8 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 2 gezogenen blauen unter den 8 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "2 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 8 blauen Kugeln ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 8 Kreuzchen auf 14 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 8 gezogenen gelben unter den 14 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 14 gelben Kugeln ziehen", also Möglichkeiten.
Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ⋅ Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "10 Kugeln aus 22 Kugeln ziehen" ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P = =
=
nur verschiedene (mit Zurücklegen)
Beispiel:
Ein Zahlenschloss hat 6 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 4 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass eine Zahl genau 3 mal enthalten ist und alle anderen 3 Zahlen genau einmal?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Anzahl der möglichen Fälle
Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 4 Möglichkeiten gibt, die sich mit den 4 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 4⋅4⋅...⋅4 = 46 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.
Anzahl der günstigen Fälle
Es gibt
Hierfür gibt es
Da ja nur Zahlen zwischen 1 und 4 möglich sind, gibt es somit
Jetzt bleiben noch 3 Felder (Zahlenschlossräder), die mit den anderen 3 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen
muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 3! = 3⋅2⋅1 Möglichkeiten.
(3 Möglichkeiten für das erste Feld, 2 Möglichkeiten für das zweite ...)
Insgesamt erhalten wir somit
Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P =
Ohne Zurücklegen rückwärts
Beispiel:
In einem Behälter sind 2 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) =
Insgesamt sind also n + 2 Kugeln im Behälter.
Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit:
Wenn dann auch tatsächlich
"blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann:
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also
D=R\{
|
|
= |
|
Wir multiplizieren den Nenner
|
|
= |
|
|⋅(
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
= |
|
|⋅ 45 |
|
|
= |
|
|
|
|
= |
|
|
|
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
n1,2 =
n1,2 =
n1,2 =
n1 =
n2 =
(Alle Lösungen sind auch in der Definitionsmenge).
Es waren also 8 blaue Kugeln im Behälter.
2 Urnen
Beispiel:
In einem Behälter A sind 3 rote und 3 blaue Kugeln. Im Behälter B sind 9 rote und 3 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.
Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:
1. Möglichkeit: 10 rote und 3 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote
Kugel von Behälter A gezogen wurde:
P1 =
2. Möglichkeit: 9 rote und 4 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue
Kugel von Behälter A gezogen wurde:
P2 =
Beide Möglichkeiten zusammen:
Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:
P = P1 + P2 =
