Aufgabenbeispiele von komplexere Erwartungswerte
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Es werden drei Würfel geworfen. Wieviel Sechser muss man erwarten?
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.5787037037037≈ 0.5787(TI-Befehl: binompdf(3,1/6,0))
Trefferzahl: 1
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.34722222222222≈ 0.3472(TI-Befehl: binompdf(3,1/6,1))
Trefferzahl: 2
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.069444444444444≈ 0.0694(TI-Befehl: binompdf(3,1/6,2))
Trefferzahl: 3
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.0046296296296296≈ 0.0046(TI-Befehl: binompdf(3,1/6,3))
Erwartungswert der Zufallsgröße X
Ereignis | 0 | 1 | 2 | 3 |
Zufallsgröße xi | 0 | 1 | 2 | 3 |
P(X=xi) | 0.5787 | 0.3472 | 0.0694 | 0.0046 |
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.5787 + 1⋅0.3472 + 2⋅0.0694 + 3⋅0.0046
≈ 0.5
Erwartungswerte mit best. Optionen im WS-Baum
Beispiel:
Ein leidenschaftlicher Mäxle-Spieler möchte eine Mäxle-Spielautomat bauen. Wie beim richtigen Mäxle sollen auch hier zwei normale Würfel gleichzeitig geworfen werden (bzw. dies eben simuliert). Bei einem Mäxle (also eine 1 und eine 2) soll dann 12€ ausbezahlt werden, bei einem Pasch (also zwei gleiche Augenzahlen) 6€ und bei 61-65 also (also ein Würfel 6 und der andere keine 6) noch 2€. Wie groß müsste der Einsatz sein, damit das Spiel fair wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
1 -> 4 | |
1 -> 5 | |
1 -> 6 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
2 -> 4 | |
2 -> 5 | |
2 -> 6 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 | |
3 -> 4 | |
3 -> 5 | |
3 -> 6 | |
4 -> 1 | |
4 -> 2 | |
4 -> 3 | |
4 -> 4 | |
4 -> 5 | |
4 -> 6 | |
5 -> 1 | |
5 -> 2 | |
5 -> 3 | |
5 -> 4 | |
5 -> 5 | |
5 -> 6 | |
6 -> 1 | |
6 -> 2 | |
6 -> 3 | |
6 -> 4 | |
6 -> 5 | |
6 -> 6 |
Die Wahrscheinlichkeit für 'Mäxle' ist:
P('1'-'2') + P('2'-'1')
= + =
Die Wahrscheinlichkeit für 'Pasch' ist:
P('1'-'1') + P('2'-'2') + P('3'-'3') + P('4'-'4') + P('5'-'5') + P('6'-'6')
= + + + + + =
Die Wahrscheinlichkeit für '60er' ist:
P('1'-'6') + P('2'-'6') + P('3'-'6') + P('4'-'6') + P('5'-'6') + P('6'-'1') + P('6'-'2') + P('6'-'3') + P('6'-'4') + P('6'-'5')
= + + + + + + + + + =
Die Zufallsgröße X beschreibt den durch die beiden Würfel ausbezahlten Euro-Betrag.
Erwartungswert der Zufallsgröße X
Ereignis | Mäxle | Pasch | 60er |
Zufallsgröße xi | 12 | 6 | 2 |
P(X=xi) | |||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 12⋅ + 6⋅ + 2⋅
=
=
=
≈ 2.22