Aufgabenbeispiele von komplexere Erwartungswerte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Erwartungswerte bei Binomialverteilungen

Beispiel:

Es werden drei Würfel geworfen. Wieviel Sechser muss man erwarten?
(Das Ergebnis bitte auf 2 Stellen runden!)

Lösung einblenden

Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:

Trefferzahl: 0

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=0) = ( 3 0 ) ( 1 6 )0 ( 5 6 )3 =0.5787037037037≈ 0.5787
(TI-Befehl: binompdf(3,1/6,0))

Trefferzahl: 1

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=1) = ( 3 1 ) ( 1 6 )1 ( 5 6 )2 =0.34722222222222≈ 0.3472
(TI-Befehl: binompdf(3,1/6,1))

Trefferzahl: 2

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=2) = ( 3 2 ) ( 1 6 )2 ( 5 6 )1 =0.069444444444444≈ 0.0694
(TI-Befehl: binompdf(3,1/6,2))

Trefferzahl: 3

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=3) = ( 3 3 ) ( 1 6 )3 ( 5 6 )0 =0.0046296296296296≈ 0.0046
(TI-Befehl: binompdf(3,1/6,3))

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 0.5787 0.3472 0.0694 0.0046
xi ⋅ P(X=xi) 0 0,3472 0,1388 0,0138

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅0.5787 + 1⋅0.3472 + 2⋅0.0694 + 3⋅0.0046

0.5

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Erscheinen zwei Kronen, so erhält man 40€. Bei einer Krone erhält man immer hin noch 10€. Erscheinen zwei gleiche Dinge (außer Kronen), so erhält man 5€. In allen anderen Fällen geht man leer aus. Mit wie viel Euro kann man bei einem Spiel durchschnittlich rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Blume -> Blume 9 64
Blume -> Raute 3 32
Blume -> Stein 3 32
Blume -> Krone 3 64
Raute -> Blume 3 32
Raute -> Raute 1 16
Raute -> Stein 1 16
Raute -> Krone 1 32
Stein -> Blume 3 32
Stein -> Raute 1 16
Stein -> Stein 1 16
Stein -> Krone 1 32
Krone -> Blume 3 64
Krone -> Raute 1 32
Krone -> Stein 1 32
Krone -> Krone 1 64

Die Wahrscheinlichkeit für '2 gleiche' ist:

P('Blume'-'Blume') + P('Raute'-'Raute') + P('Stein'-'Stein')
= 9 64 + 1 16 + 1 16 = 17 64

Die Wahrscheinlichkeit für '1 Krone' ist:

P('Blume'-'Krone') + P('Raute'-'Krone') + P('Stein'-'Krone') + P('Krone'-'Blume') + P('Krone'-'Raute') + P('Krone'-'Stein')
= 3 64 + 1 32 + 1 32 + 3 64 + 1 32 + 1 32 = 7 32

Die Wahrscheinlichkeit für '2 Kronen' ist:

P('Krone'-'Krone')
= 1 64

Die Zufallsgröße X beschreibt den ausbezahlten Gewinn bei einem Spiel.

Erwartungswert der Zufallsgröße X

Ereignis 2 gleiche 1 Krone 2 Kronen
Zufallsgröße xi 5 10 40
P(X=xi) 17 64 7 32 1 64
xi ⋅ P(X=xi) 85 64 35 16 5 8

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 5⋅ 17 64 + 10⋅ 7 32 + 40⋅ 1 64

= 85 64 + 35 16 + 5 8
= 85 64 + 140 64 + 40 64
= 265 64

4.14