Aufgabenbeispiele von komplexere Erwartungswerte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Erwartungswerte bei Binomialverteilungen

Beispiel:

Es werden drei Würfel geworfen. Wieviel Sechser muss man erwarten?
(Das Ergebnis bitte auf 2 Stellen runden!)

Lösung einblenden

Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:

Trefferzahl: 0

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=0) = ( 3 0 ) ( 1 6 )0 ( 5 6 )3 =0.5787037037037≈ 0.5787
(TI-Befehl: binompdf(3,1/6,0))

Trefferzahl: 1

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=1) = ( 3 1 ) ( 1 6 )1 ( 5 6 )2 =0.34722222222222≈ 0.3472
(TI-Befehl: binompdf(3,1/6,1))

Trefferzahl: 2

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=2) = ( 3 2 ) ( 1 6 )2 ( 5 6 )1 =0.069444444444444≈ 0.0694
(TI-Befehl: binompdf(3,1/6,2))

Trefferzahl: 3

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=3) = ( 3 3 ) ( 1 6 )3 ( 5 6 )0 =0.0046296296296296≈ 0.0046
(TI-Befehl: binompdf(3,1/6,3))

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 0.5787 0.3472 0.0694 0.0046
xi ⋅ P(X=xi) 0 0,3472 0,1388 0,0138

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅0.5787 + 1⋅0.3472 + 2⋅0.0694 + 3⋅0.0046

0.5

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

Ein leidenschaftlicher Mäxle-Spieler möchte eine Mäxle-Spielautomat bauen. Wie beim richtigen Mäxle sollen auch hier zwei normale Würfel gleichzeitig geworfen werden (bzw. dies eben simuliert). Bei einem Mäxle (also eine 1 und eine 2) soll dann 12€ ausbezahlt werden, bei einem Pasch (also zwei gleiche Augenzahlen) 6€ und bei 61-65 also (also ein Würfel 6 und der andere keine 6) noch 2€. Wie groß müsste der Einsatz sein, damit das Spiel fair wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Die Wahrscheinlichkeit für 'Mäxle' ist:

P('1'-'2') + P('2'-'1')
= 1 36 + 1 36 = 1 18

Die Wahrscheinlichkeit für 'Pasch' ist:

P('1'-'1') + P('2'-'2') + P('3'-'3') + P('4'-'4') + P('5'-'5') + P('6'-'6')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 1 6

Die Wahrscheinlichkeit für '60er' ist:

P('1'-'6') + P('2'-'6') + P('3'-'6') + P('4'-'6') + P('5'-'6') + P('6'-'1') + P('6'-'2') + P('6'-'3') + P('6'-'4') + P('6'-'5')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 5 18

Die Zufallsgröße X beschreibt den durch die beiden Würfel ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis Mäxle Pasch 60er
Zufallsgröße xi 12 6 2
P(X=xi) 1 18 1 6 5 18
xi ⋅ P(X=xi) 2 3 1 5 9

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 12⋅ 1 18 + 6⋅ 1 6 + 2⋅ 5 18

= 2 3 + 1+ 5 9
= 6 9 + 9 9 + 5 9
= 20 9

2.22