Aufgabenbeispiele von komplexere Erwartungswerte
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Auf einem Jahrmarkt wird Torwandschießen angeboten. Dabei darf man für 19€ Einsatz 6 Schüsse abgeben. Trifft man alle 6, so erhält man 4000€. Bei 5 Treffern bekommt man 500€, und bei 4 Treffern 40€. Trifft man weniger als 4 mal, so erhält man nichts. Mit welchem durchschnittlichen Gewinn pro Spiel kann ein Spieler rechnen, wenn man von einer Trefferwahrscheinlichkeit von p=0,25 ausgehen kann?
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0-3
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.25.
= + + + = 0.96240234375 ≈ 0.9624(TI-Befehl: binomcdf(6,0.25,3))
Trefferzahl: 4
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.25.
= =0.032958984375≈ 0.033(TI-Befehl: binompdf(6,0.25,4))
Trefferzahl: 5
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.25.
= =0.00439453125≈ 0.0044(TI-Befehl: binompdf(6,0.25,5))
Trefferzahl: 6
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.25.
= =0.000244140625≈ 0.0002(TI-Befehl: binompdf(6,0.25,6))
Erwartungswerte der Zufallsgrößen X und Y
Ereignis | 0-3 | 4 | 5 | 6 |
Zufallsgröße xi | 0 | 40 | 500 | 4000 |
Zufallsgröße yi (Gewinn) | -19 | 21 | 481 | 3981 |
P(X=xi) | 0.9624 | 0.033 | 0.0044 | 0.0002 |
xi ⋅ P(X=xi) | ||||
yi ⋅ P(Y=yi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.9624 + 40⋅0.033 + 500⋅0.0044 + 4000⋅0.0002
≈ 4.32
Das ist jetzt allerdings der Erwartungswert der Auszahlung, von dem man noch den Einsatz abziehen muss, so dass sich als Erwartungswert des Gewinns E(x)=4.32 - 19 = -14.68 ergibt.
Oder man rechnet gleich den Erwartungswert der einzelnen Gewinne (X2) aus:
E(Y)= -19⋅0.9624 + 21⋅0.033 + 481⋅0.0044 + 3981⋅0.0002
≈ -14.68
Erwartungswerte bei 'Ziehen bis erstmals ...'
Beispiel:
Aus einem Kartenstapel mit 11 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis das erste Herz erscheint.
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Die Wahrscheinlichkeit für ein 'Herz' im 1-ten Versuch st:
Die Wahrscheinlichkeit für ein 'Herz' im 2-ten Versuch st:
Die Wahrscheinlichkeit für ein 'Herz' im 3-ten Versuch st:
Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis das erste Herz gekommen ist.
Erwartungswert der Zufallsgröße X
Ereignis | 1 | 2 | 3 |
Zufallsgröße xi | 1 | 2 | 3 |
P(X=xi) | |||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1⋅ + 2⋅ + 3⋅
=
=
=
=
≈ 1.17