Aufgabenbeispiele von komplexere Erwartungswerte
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Ein Spieler würfelt mit drei Würfeln. Bei drei Sechsern erhält er 125€, bei 2 Sechsern bekommt er noch 20€, bei einer Sechs 2€. Ist gar keine Sechs dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.5787037037037≈ 0.5787(TI-Befehl: binompdf(3,1/6,0))
Trefferzahl: 1
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.34722222222222≈ 0.3472(TI-Befehl: binompdf(3,1/6,1))
Trefferzahl: 2
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.069444444444444≈ 0.0694(TI-Befehl: binompdf(3,1/6,2))
Trefferzahl: 3
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=.
= =0.0046296296296296≈ 0.0046(TI-Befehl: binompdf(3,1/6,3))
Erwartungswert der Zufallsgröße X
| Ereignis | 0 | 1 | 2 | 3 |
| Zufallsgröße xi | 0 | 2 | 20 | 125 |
| P(X=xi) | 0.5787 | 0.3472 | 0.0694 | 0.0046 |
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.5787 + 2⋅0.3472 + 20⋅0.0694 + 125⋅0.0046
≈ 2.66
Erwartungswerte mit best. Optionen im WS-Baum
Beispiel:
In einem Stapel Karten mit 6 Asse, 8 Könige, 9 Damen und 7 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 400, 2 Damen 180 und 2 Buben 80 Punkte. Außerdem gibt es für ein Paar aus Dame und König 20 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
| Ereignis | P |
|---|---|
| As -> As | |
| As -> König | |
| As -> Dame | |
| As -> Bube | |
| König -> As | |
| König -> König | |
| König -> Dame | |
| König -> Bube | |
| Dame -> As | |
| Dame -> König | |
| Dame -> Dame | |
| Dame -> Bube | |
| Bube -> As | |
| Bube -> König | |
| Bube -> Dame | |
| Bube -> Bube |
Die Wahrscheinlichkeit für '2 Asse' ist:
P('As'-'As')
=
Die Wahrscheinlichkeit für '2 Könige' ist:
P('König'-'König')
=
Die Wahrscheinlichkeit für '2 Damen' ist:
P('Dame'-'Dame')
=
Die Wahrscheinlichkeit für '2 Buben' ist:
P('Bube'-'Bube')
=
Die Wahrscheinlichkeit für 'Paar (D&K)' ist:
P('König'-'Dame') + P('Dame'-'König')
= + =
Die Zufallsgröße X beschreibt die gewonnenen Punkte.
Erwartungswert der Zufallsgröße X
| Ereignis | 2 Asse | 2 Könige | 2 Damen | 2 Buben | Paar (D&K) |
| Zufallsgröße xi | 1000 | 400 | 180 | 80 | 20 |
| P(X=xi) | |||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1000⋅ + 400⋅ + 180⋅ + 80⋅ + 20⋅
=
=
=
≈ 82.3
