Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 80% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.8 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.2 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.2=(1-p)4

=>1-p=0.24 ≈ 0.6687

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.6687 ≈ 0.3313

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 25 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 22 25 21 24 =1- 77 100 ≈0.23
41- 21 25 20 24 =1- 7 10 ≈0.3
51- 20 25 19 24 =1- 19 30 ≈0.3667
61- 19 25 18 24 =1- 57 100 ≈0.43
71- 18 25 17 24 =1- 51 100 ≈0.49
81- 17 25 16 24 =1- 34 75 ≈0.5467
91- 16 25 15 24 =1- 2 5 ≈0.6
101- 15 25 14 24 =1- 7 20 ≈0.65
111- 14 25 13 24 =1- 91 300 ≈0.6967
121- 13 25 12 24 =1- 13 50 ≈0.74
131- 12 25 11 24 =1- 11 50 ≈0.78
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 22 25 21 24 (beim ersten Zufallsversuch 22 25 und beim zweiten 21 24 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 22 25 21 24

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(25-x)/25*(24-x)/24)

In dieser Tabelle erkennen wir, dass erstmals bei 13 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 13 sein.