Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 3 Versuchen mindestens einmal zu treffen bei 81% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.81 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 3 Durchgängen, also ist 1-P=0.19 die Wahrscheinlichkeit für keinen Treffer bei bei 3 Durchgängen.

Es gilt also 0.19=(1-p)3

=>1-p=0.193 ≈ 0.5749

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.5749 ≈ 0.4251

gesuchtes p (ohne zurücklegen)

Beispiel:

In einem Kartenstapel mit 24 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 95%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?

Lösung einblenden
Anzahl der Joker im KartenstapelP('höchstens einen Joker')
......
31- 3 24 2 23 =1- 1 92 ≈0.9891
41- 4 24 3 23 =1- 1 46 ≈0.9783
51- 5 24 4 23 =1- 5 138 ≈0.9638
61- 6 24 5 23 =1- 5 92 ≈0.9457
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.

Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Joker im Kartenstapel=3 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= 3 24 2 23 (beim ersten Zufallsversuch 3 24 und beim zweiten 2 23 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1- 3 24 2 23

Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/24*(x-1)/23)

In dieser Tabelle erkennen wir, dass letztmals bei 5 als 'Anzahl der Joker im Kartenstapel' die gesuchte Wahrscheinlichkeit über 95% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 5 sein.