Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 2 Versuchen mindestens einmal zu treffen bei 85% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.85 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 2 Durchgängen, also ist 1-P=0.15 die Wahrscheinlichkeit für keinen Treffer bei bei 2 Durchgängen.

Es gilt also 0.15=(1-p)2

=>1-p=0.152 ≈ 0.3873

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.3873 ≈ 0.6127

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 30 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 50% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 27 30 26 29 =1- 117 145 ≈0.1931
41- 26 30 25 29 =1- 65 87 ≈0.2529
51- 25 30 24 29 =1- 20 29 ≈0.3103
61- 24 30 23 29 =1- 92 145 ≈0.3655
71- 23 30 22 29 =1- 253 435 ≈0.4184
81- 22 30 21 29 =1- 77 145 ≈0.469
91- 21 30 20 29 =1- 14 29 ≈0.5172
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 27 30 26 29 (beim ersten Zufallsversuch 27 30 und beim zweiten 26 29 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 27 30 26 29

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(30-x)/30*(29-x)/29)

In dieser Tabelle erkennen wir, dass erstmals bei 9 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 50% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 9 sein.