Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 76% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.76 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.24 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.24=(1-p)4

=>1-p=0.244 ≈ 0.6999

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.6999 ≈ 0.3001

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 65 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 95% liegen. Wieviel der 65 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
71- 7 65 6 64 =1- 21 2080 ≈0.9899
81- 8 65 7 64 =1- 7 520 ≈0.9865
91- 9 65 8 64 =1- 9 520 ≈0.9827
101- 10 65 9 64 =1- 9 416 ≈0.9784
111- 11 65 10 64 =1- 11 416 ≈0.9736
121- 12 65 11 64 =1- 33 1040 ≈0.9683
131- 13 65 12 64 =1- 3 80 ≈0.9625
141- 14 65 13 64 =1- 7 160 ≈0.9563
151- 15 65 14 64 =1- 21 416 ≈0.9495
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=7 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 7 65 6 64 (beim ersten Zufallsversuch 7 65 und beim zweiten 6 64 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 7 65 6 64

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=7. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/65*(x-1)/64)

In dieser Tabelle erkennen wir, dass letztmals bei 14 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 95% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 14 sein.