Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 55% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.55 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.45 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.45=(1-p)4

=>1-p=0.454 ≈ 0.819

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.819 ≈ 0.181

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 45 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 42 45 41 44 =1- 287 330 ≈0.1303
41- 41 45 40 44 =1- 82 99 ≈0.1717
51- 40 45 39 44 =1- 26 33 ≈0.2121
61- 39 45 38 44 =1- 247 330 ≈0.2515
71- 38 45 37 44 =1- 703 990 ≈0.2899
81- 37 45 36 44 =1- 37 55 ≈0.3273
91- 36 45 35 44 =1- 7 11 ≈0.3636
101- 35 45 34 44 =1- 119 198 ≈0.399
111- 34 45 33 44 =1- 17 30 ≈0.4333
121- 33 45 32 44 =1- 8 15 ≈0.4667
131- 32 45 31 44 =1- 248 495 ≈0.499
141- 31 45 30 44 =1- 31 66 ≈0.5303
151- 30 45 29 44 =1- 29 66 ≈0.5606
161- 29 45 28 44 =1- 203 495 ≈0.5899
171- 28 45 27 44 =1- 21 55 ≈0.6182
181- 27 45 26 44 =1- 39 110 ≈0.6455
191- 26 45 25 44 =1- 65 198 ≈0.6717
201- 25 45 24 44 =1- 10 33 ≈0.697
211- 24 45 23 44 =1- 46 165 ≈0.7212
221- 23 45 22 44 =1- 23 90 ≈0.7444
231- 22 45 21 44 =1- 7 30 ≈0.7667
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 42 45 41 44 (beim ersten Zufallsversuch 42 45 und beim zweiten 41 44 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 42 45 41 44

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(45-x)/45*(44-x)/44)

In dieser Tabelle erkennen wir, dass erstmals bei 23 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 23 sein.