Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 3 Versuchen mindestens einmal zu treffen bei 91% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.91 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 3 Durchgängen, also ist 1-P=0.09 die Wahrscheinlichkeit für keinen Treffer bei bei 3 Durchgängen.

Es gilt also 0.09=(1-p)3

=>1-p=0.093 ≈ 0.4481

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.4481 ≈ 0.5519

gesuchtes p (ohne zurücklegen)

Beispiel:

In einem Kartenstapel mit 26 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 85%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?

Lösung einblenden
Anzahl der Joker im KartenstapelP('höchstens einen Joker')
......
41- 4 26 3 25 =1- 6 325 ≈0.9815
51- 5 26 4 25 =1- 2 65 ≈0.9692
61- 6 26 5 25 =1- 3 65 ≈0.9538
71- 7 26 6 25 =1- 21 325 ≈0.9354
81- 8 26 7 25 =1- 28 325 ≈0.9138
91- 9 26 8 25 =1- 36 325 ≈0.8892
101- 10 26 9 25 =1- 9 65 ≈0.8615
111- 11 26 10 25 =1- 11 65 ≈0.8308
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.

Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Joker im Kartenstapel=4 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= 4 26 3 25 (beim ersten Zufallsversuch 4 26 und beim zweiten 3 25 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1- 4 26 3 25

Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=4. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/26*(x-1)/25)

In dieser Tabelle erkennen wir, dass letztmals bei 10 als 'Anzahl der Joker im Kartenstapel' die gesuchte Wahrscheinlichkeit über 85% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 10 sein.