Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 3 Versuchen mindestens einmal zu treffen bei 84% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.84 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 3 Durchgängen, also ist 1-P=0.16 die Wahrscheinlichkeit für keinen Treffer bei bei 3 Durchgängen.

Es gilt also 0.16=(1-p)3

=>1-p=0.163 ≈ 0.5429

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.5429 ≈ 0.4571

gesuchtes p (ohne zurücklegen)

Beispiel:

In einem Kartenstapel mit 27 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 80%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?

Lösung einblenden
Anzahl der Joker im KartenstapelP('höchstens einen Joker')
......
41- 4 27 3 26 =1- 2 117 ≈0.9829
51- 5 27 4 26 =1- 10 351 ≈0.9715
61- 6 27 5 26 =1- 5 117 ≈0.9573
71- 7 27 6 26 =1- 7 117 ≈0.9402
81- 8 27 7 26 =1- 28 351 ≈0.9202
91- 9 27 8 26 =1- 4 39 ≈0.8974
101- 10 27 9 26 =1- 5 39 ≈0.8718
111- 11 27 10 26 =1- 55 351 ≈0.8433
121- 12 27 11 26 =1- 22 117 ≈0.812
131- 13 27 12 26 =1- 2 9 ≈0.7778
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.

Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Joker im Kartenstapel=4 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= 4 27 3 26 (beim ersten Zufallsversuch 4 27 und beim zweiten 3 26 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1- 4 27 3 26

Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=4. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/27*(x-1)/26)

In dieser Tabelle erkennen wir, dass letztmals bei 12 als 'Anzahl der Joker im Kartenstapel' die gesuchte Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 12 sein.