Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
p gesucht (n-te Wurzel)
Beispiel:
Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 3 Versuchen mindestens einmal zu treffen bei 91% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)
P=0.91 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 3 Durchgängen, also ist 1-P=0.09 die Wahrscheinlichkeit für keinen Treffer bei bei 3 Durchgängen.
Es gilt also 0.09=(1-p)3
=>1-p= ≈ 0.4481
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.4481 ≈ 0.5519
gesuchtes p (ohne zurücklegen)
Beispiel:
In einem Kartenstapel mit 26 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 85%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?
Anzahl der Joker im Kartenstapel | P('höchstens einen Joker') |
---|---|
... | ... |
4 | 1-⋅=1-≈0.9815 |
5 | 1-⋅=1-≈0.9692 |
6 | 1-⋅=1-≈0.9538 |
7 | 1-⋅=1-≈0.9354 |
8 | 1-⋅=1-≈0.9138 |
9 | 1-⋅=1-≈0.8892 |
10 | 1-⋅=1-≈0.8615 |
11 | 1-⋅=1-≈0.8308 |
... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.
Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der Joker im Kartenstapel=4 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=4. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/26*(x-1)/25)
In dieser Tabelle erkennen wir, dass letztmals bei 10 als 'Anzahl der Joker im Kartenstapel' die gesuchte
Wahrscheinlichkeit über 85% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 10 sein.