Aufgabenbeispiele von Zylinder
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zylinder V und O
Beispiel:
Ein Zylinder hat den Durchmesser 50 cm und die Höhe h = 9 cm. Bestimme sein Volumen und seine Oberfläche.
Zuerst müssen wir den Radius als halben Durchmesser berechnnen: r = cm = 25cm
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 252 cm² ≈ 1963,5 cm²
Für das Volumen müssen wir nun noch G = 1963.5 cm² mit der Höhe h = 9 cm multiplizieren:
V = G ⋅ h ≈ 1963.5 cm² ⋅ 9 cm ≈ 17671,46 cm³
Für die Oberfläche brauchen wir zwei mal die Grundfläche G für die obere und untere Seite (wenn der Zylinder senkrecht steht) und den Mantel, der die Form eines Rechtecks hat, bei dem eine Seite die Höhe h = 9 cm und die andere Seite der Umfang der kreisförmigen Grundfläche ist, also U = 2π⋅r = 2π⋅25 cm ≈ 157.08 cm
Somit gilt für die Oberfläche:
O = 2⋅G + M = 2⋅G + h⋅U
≈ 2⋅ 1963.5 cm² + 9 cm ⋅ 2π ⋅ 25 cm
≈ 3926.99 cm² + 9 cm ⋅ 157.08 cm
≈ 3926.99 cm² + 1413.72 cm²
≈
5340,71 cm²
Zylinder rückwärts (einfach)
Beispiel:
Ein Zylinder hat das Volumen V = 4536.5 mm³ = und die Höhe h = 4 mm. Bestimme den Oberflächeninhalt O dieses Zylinders.
Um den gesuchten Oberflächeninhalt O berechnen zu können, benötigen wir den Radius r und die Höhe h. Wir müssen also zuerst noch den Radius r bestimmen. Hierfür nutzen wir das gegebene Volumen V.
Wir schreiben also einfach die Formel für das gegebene Volumen V auf und setzen alle gegebenen Größen ein.
V = G ⋅ h = π ⋅ r2 ⋅ h, also
π ⋅ r2 ⋅ h = V
alle gegebenen Größen eingesetzt:
= 4536.5
Jetzt verrechnen wir die Werte und lösen nach r auf:
=
= | |: | ||
= | | | ||
r1 | = |
|
≈
|
r2 | = |
|
≈
|
Wir erhalten also r = 19 und können nun damit den gesuchten Oberflächeninhalt O berechnen.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 192 mm² ≈ 1134,11 mm²
Für die Oberfläche brauchen wir zwei mal die Grundfläche G für die obere und untere Seite (wenn der Zylinder senkrecht steht) und den Mantel, der die Form eines Rechtecks hat, bei dem eine Seite die Höhe h = 4 mm und die andere Seite der Umfang der kreisförmigen Grundfläche ist, also U = 2π⋅r = 2π⋅19 mm ≈ 119.38 mm
Somit gilt für die Oberfläche:
O = 2⋅G + M = 2⋅G + h⋅U
≈ 2⋅ 1134.11 mm² + 4 mm ⋅ 2π ⋅ 19 mm
≈ 2268.23 mm² + 4 mm ⋅ 119.38 mm
≈ 2268.23 mm² + 477.52 mm²
≈
2745,75 mm²
Zylinder rückw. (alle Möglichk.)
Beispiel:
Ein Zylinder hat den Oberflächeninhalt O = 14765.5 mm² = und die Höhe h = 3 mm. Bestimme das Volumen V dieses Zylinders.
Um das gesuchte Volumen V berechnen zu können, benötigen wir den Radius r und die Höhe h. Wir müssen also zuerst noch den Radius r bestimmen. Hierfür nutzen wir den gegebenen Oberflächeninhalt O.
Wir schreiben also einfach die Formel für den gegebenen Oberflächeninhalt O auf und setzen alle gegebenen Größen ein.
O = 2G + M = 2π ⋅ r2 + 2π ⋅ r ⋅ h, also
2 ⋅ π ⋅ r2 + 2π ⋅ r ⋅ h = O
alle gegebenen Größen eingesetzt:
Wir teilen auf beiden Seiten durch 2π
Jetzt verrechnen wir die Werte und lösen nach r auf:
|
= |
|
|
|
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
r1,2 =
r1,2 =
r1,2 =
r1 =
r2 =
Wir erhalten also r = 47 und können nun damit das gesuchte Volumen V berechnen.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 472 mm² ≈ 6939,78 mm²
Für das Volumen müssen wir nun noch G = 6939.78 mm² mit der Höhe h = 3 mm multiplizieren:
V = G ⋅ h ≈ 6939.78 mm² ⋅ 3 mm ≈ 20819,33 mm³
Zylinder Anwendungen
Beispiel:
Einen 3,5 m lange Dachrinne hat einen halbkreisförmigen Querschnitt und ist inklusiv ihres Randes 14 cm breit (Durchmesser des Halbkreises). Die Dachrinne ist aus einem 0,42 cm dicken Blech mit einer Dichte von 8 g/cm³ gefertigt. Wie schwer ist die Dachrinne?
Der Durchmesser des gesamten Halbzylinders ist ja mit d = 14 cm gegeben, also ist der äußere Radius r = 7 cm.
Da die Dicke des halben Hohlylinders 0,42 cm ist, muss also der innere Radius rin = 6,58 cm sein.
Dadurch ergibt sich für den Flächeninhalt des Querschnitts des halben Hohlylinders:
G = Aout - Ain =
=
= 76,969 cm2 - 68,01 cm2
=
8,959 cm2
Damit können wir das Volumen des Hohlzylinders berechnen. Dazu multiplizieren wir einfach den Flächeninhalt des Kreisrings mit der Höhe des halben Hohlzylinders h = 350 cm:
V = 8,959 cm2 ⋅ 350 cm = 3136 cm3
Die gesuchte Masse erhalten wir nun noch durch Multiplizieren mit der Dichte 8 g/cm3:
m = 3136 cm3 ⋅ 8 g/cm3 = 25088 g = 25,088 kg.