Aufgabenbeispiele von Prismen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Volumen eines Prisma

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Berechne das Volumen des dargestellten, senkrechten Prismas.

Lösung einblenden

Das Volumen eines senkrechten Prismas berechnet man mit V = G ⋅ h,
also die Fläche der Grundseite multipliziert mit der Höhe des Prismas, wobei die Höhe hier die 9 cm nach schräg hinten ist.
Die Fläche der Grundseite berechnet man mit:
A = 1 2 ⋅ Grundseite ⋅ Höhe
also hier:

A = 1 2 ⋅ 6 cm ⋅ 8 cm = 24 cm²

Das wird dann mit der Höhe multipliziert: V = 24 cm² ⋅ 9 cm = 216 cm³

Volumen eines Prisma 2

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Prisma hat die abgebildete Figur als Grundfläche und
die Höhe h = 100 m. Berechne das Volumen des Prismas.

Lösung einblenden

Wir berechnen natürlich zuerst den Flächeninhalt der abgebildeten Grundfläche und nutzen hierfür die Flächeninhaltsformel des Dreiecks:

G = 1 2 c ⋅ hc

Dazu müssen wir zuerst noch die Höhe hc mit dem Satz des Pythagoras (im rechtwinkligen halben Dreieck) berechnen:

hc2 + ( 5 2 )2 = 72 |-( 5 2 )2

hc2 = 72 - ( 5 2 )2 = 72 - 2.52 = 49 - 6.25= 42.75

Daraus ergibt sich:

hc = 42,75 ≈ 6.538

Und daraus ergibt sich wiederum für die Grundfläche G:

G = 1 2 c ⋅ hc = 1 2 ⋅ 5 ⋅ 6.538 ≈ 16.3

Um nun das gesuchte Volumen des Prismas zu berechnen, müssen wir nur noch die Grundfläche G mit der Höhe h=100 m multiplizieren:

V = G ⋅ h ≈ 16.3 m² ⋅ 100 m ≈ 1634.6 m³

Prismavolumen rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Prisma hat das Volumen V = 935.3 mm³, die Höhe h = 60 mm und als Grundfläche das abgebildete gleichseitige Dreieck.
Berechne die rote Strecke x.

Lösung einblenden

Da ja für das Volumen eines Prismas V = G ⋅ h gilt, können wir umgekehrt sofort die Grundfläche berechnen als :
G = V h 935.3 60 ≈ 15.59

Jetzt müssen wir uns eine Formel für das gleichseitige Dreieck mit Basisseitenlänge x herleiten (oder in der Formelsammlung suchen ;-):

Nach dem Satz des Pythagoras gilt:

hc2 + ( x 2 )2 = x2 |-( x 2 )2

hc2 = x2 - ( x 2 )2 = x2 - 1 4 x2 = 3 4 x2

Daraus ergibt sich:

hc = 3 2 a

Und daraus ergibt sich wiederum für die Grundfläche G:

G = 1 2 a ⋅ hc = 1 2 ⋅ a ⋅ 3 2 a ≈ 3 4 x2

Hier können wir jetzt die bereits ermittelte Grundfläche G = 15.59 einsetzen:

15.59 ≈ 3 4 x2 | ⋅4: 3

36 ≈ x2

x ≈ 36 ≈ 6

Für x = 6 mm ist somit die Grundfläche G ≈ 15.6 mm² und das Volumen des Prismas V ≈ 935.3 mm³