Aufgabenbeispiele von Vierfeldertafel
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Mengen-Operationen elementar
Beispiel:
Gegeben ist die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Menge A = {1; 2; 3; 4; 5; 6; 7; 8}. Bestimme .
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Menge A = {1; 2; 3; 4; 5; 6; 7; 8}.
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10},
die nicht in der Menge A={1; 2; 3; 4; 5; 6; 7; 8} sind,
also
= {9; 10}
Mengen-Operationen (allg.)
Beispiel:
Gegeben ist die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Mengen A = {1; 2; 3; 5; 7; 8; 9} und B = {2; 4; 5; 7; 10}. Bestimme
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Mengen A = {1; 2; 3; 5; 7; 8; 9} und B = {2; 4; 5; 7; 10}.
Um die Menge
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10},
die nicht in der Menge A={1; 2; 3; 5; 7; 8; 9} sind,
also
= {4; 6; 10}
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10},
die nicht in der Menge B={2; 4; 5; 7; 10} sind,
also
= {1; 3; 6; 8; 9}
Die Menge
also
Mengen-Operationen Anwendungen
Beispiel:
In einer Urne sind 13 Kugeln mit den Zahlen 1 bis 13 beschriftet. Bestimme alle Kugeln deren Zahl durch 4 teilbar ist oder deren Zahl höchstens die 3 ist.
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13} und die Mengen A = {4; 8; 12} und B = {1; 2; 3}.
Die Menge
also
Mengen-Operationen Wahrscheinlichkeit
Beispiel:
Gegeben ist die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Mengen A = {3; 6; 9; 10} und B = {2; 3; 4; 5; 6; 8; 10}. Es wird zufällig ein Element der Ergebnismenge S gewählt. Dabei haben alle Elemente die gleiche Wahrscheinlichkeit. Wie groß ist die Wahrscheinlichkeit, dass dieses in der Menge
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Mengen A = {3; 6; 9; 10} und B = {2; 3; 4; 5; 6; 8; 10}.
Um die Menge
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10},
die nicht in der Menge B={2; 3; 4; 5; 6; 8; 10} sind,
also
= {1; 7; 9}
Die Menge
also
Da alle Elemente aus S gleich wahrscheinlich sind, kann man nun die gesuchte Wahrscheinlichkeit über die Anzahl der Elemente der Mengen bestimmen:
P(
Vierfeldertafel mit Anzahlen
Beispiel:
In der angezeigten Vierfeldertafel sind in jeder Zelle Anzahlen. Vervollständige die Vierfeldertafel.
In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
H(A ∩ B) + 133 = 240
Somit gilt: H(A ∩ B) = 240 - 133 = 107
| 107 | 133 | 240 | |
| 105 | 233 | ||
In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
105 + H( ∩ ) = 233
Somit gilt: H( ∩ ) = 233 - 105 = 128
| 107 | 133 | 240 | |
| 105 | 128 | 233 | |
In der 1. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
107 + 105 = H(B)
Somit gilt: H(B) = 107 + 105 = 212
| 107 | 133 | 240 | |
| 105 | 128 | 233 | |
| 212 |
In der 2. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
133 + 128 = H( )
Somit gilt: H( ) = 133 + 128 = 261
| 107 | 133 | 240 | |
| 105 | 128 | 233 | |
| 212 | 261 |
In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
240 + 233 = H(B + )
Somit gilt: H(B + ) = 240 + 233 = 473
| 107 | 133 | 240 | |
| 105 | 128 | 233 | |
| 212 | 261 | 473 |
Somit ist die Vierfeldertafel komplett ausgefüllt.
Vierfeldertafel mit Wahrscheinlichkeiten
Beispiel:
In der angezeigten Vierfeldertafel stehen in jeder Zelle Wahrscheinlichkeiten. Vervollständige die Vierfeldertafel.
Als erstes tragen wir rechts unten die Summe P(A)+P( ) = P(B)+P( ) = 1 ein, schließlich ist die Wahrscheinlichkeit, dass A gilt oder dass gilt 100%.
| 0,25 | 0,74 | ||
| 0,05 | |||
| 1 |
In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
0.25 + P(A ∩ ) = 0.74
Somit gilt: P(A ∩ ) = 0.74 - 0.25 = 0.49
| 0,25 | 0,49 | 0,74 | |
| 0,05 | |||
| 1 |
In der 2. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
0.49 + 0.05 = P( )
Somit gilt: P( ) = 0.49 + 0.05 = 0.54
| 0,25 | 0,49 | 0,74 | |
| 0,05 | |||
| 0,54 | 1 |
In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
0.74 + P( ) = 1
Somit gilt: P( ) = 1 - 0.74 = 0.26
| 0,25 | 0,49 | 0,74 | |
| 0,05 | 0,26 | ||
| 0,54 | 1 |
In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
P( ∩ B) + 0.05 = 0.26
Somit gilt: P( ∩ B) = 0.26 - 0.05 = 0.21
| 0,25 | 0,49 | 0,74 | |
| 0,21 | 0,05 | 0,26 | |
| 0,54 | 1 |
In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
P(B) + 0.54 = 1
Somit gilt: P(B) = 1 - 0.54 = 0.46
| 0,25 | 0,49 | 0,74 | |
| 0,21 | 0,05 | 0,26 | |
| 0,46 | 0,54 | 1 |
Somit ist die Vierfeldertafel komplett ausgefüllt.
VFT Anwend. Häufigkeiten
Beispiel:
Alle SchülerInnen eines Gymnasiums kommen entweder mit dem Fahrrad bzw. zu Fuß oder aber mit dem Bus oder einem Auto zur Schule. Von denen, die weiter als 2 km von der Schule entfernt wohnen, fahren 302 mit dem Bus oder Auto. Von den 323 SchülerInnen, die nicht weiter als 2 km von der Schule entfernt wohnen, kommen aber immerhin 197 mit dem Fahrrad oder zu Fuß. Insgesamt fahren 231 mit dem Fahrrad oder gehen zu Fuß. Wie viele SchülerInnen hat die Schule ?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
: nah
: nicht nah, also entfernt
: Fahrrad/Fuß
: nicht Fahrrad/Fuß, also Bus/Auto
Hiermit ergibt sich folgende Vierfeldertafel:
|
(Fahrrad/Fuß) |
(Bus/Auto) | ||
|---|---|---|---|
|
(nah) | 197 | 323 | |
|
(entfernt) | 302 | ||
| 231 |
Diese müssen wir nun vollends ausfüllen:
Rechenweg zum Ausfüllen der Vierfeldertafel einblenden
In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
197 + H(A ∩ ) = 323
Somit gilt: H(A ∩ ) = 323 - 197 = 126
|
(Fahrrad/Fuß) |
(Bus/Auto) | ||
|---|---|---|---|
|
(nah) | 197 | 126 | 323 |
|
(entfernt) | 302 | ||
| 231 |
In der 1. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
197 + H( ∩ B) = 231
Somit gilt: H( ∩ B) = 231 - 197 = 34
|
(Fahrrad/Fuß) |
(Bus/Auto) | ||
|---|---|---|---|
|
(nah) | 197 | 126 | 323 |
|
(entfernt) | 34 | 302 | |
| 231 |
In der 2. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
126 + 302 = H( )
Somit gilt: H( ) = 126 + 302 = 428
|
(Fahrrad/Fuß) |
(Bus/Auto) | ||
|---|---|---|---|
|
(nah) | 197 | 126 | 323 |
|
(entfernt) | 34 | 302 | |
| 231 | 428 |
In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
34 + 302 = H( )
Somit gilt: H( ) = 34 + 302 = 336
|
(Fahrrad/Fuß) |
(Bus/Auto) | ||
|---|---|---|---|
|
(nah) | 197 | 126 | 323 |
|
(entfernt) | 34 | 302 | 336 |
| 231 | 428 |
In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
231 + 428 = H(B + )
Somit gilt: H(B + ) = 231 + 428 = 659
|
(Fahrrad/Fuß) |
(Bus/Auto) | ||
|---|---|---|---|
|
(nah) | 197 | 126 | 323 |
|
(entfernt) | 34 | 302 | 336 |
| 231 | 428 | 659 |
Somit ist die Vierfeldertafel komplett ausgefüllt.
|
(Fahrrad/Fuß) |
(Bus/Auto) | ||
|---|---|---|---|
|
(nah) | 197 | 126 | 323 |
|
(entfernt) | 34 | 302 | 336 |
| 231 | 428 | 659 |
Der gesuchte Wert, Anzahl der Schüler der Schule, ist also 659.
VFT Anwend. prozentual (leichter)
Beispiel:
Schätzungen zufolge sind 5% der Lehrer Informatiklehrer. Von den anderen Lehrern nutzen 93% das MS-Office. Von den Informatik-Lehrern bevorzugen aber 82% ein anderes Office-Paket wie OpenOffice oder LibreOffice. Wie viel Prozent der Lehrer insgesamt nutzen nach diesen Schätzungen das MS-Office?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
: Informatiklehrer
: nicht Informatiklehrer, also andere
: MS-Office
: nicht MS-Office, also anderes Office
Hiermit ergibt sich folgende Vierfeldertafel:
|
(MS-Office) |
(anderes Office) | ||
|---|---|---|---|
|
(Informatiklehrer) | 0,05 | ||
|
(andere) | |||
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe + = + = 1 ein, schließlich ist die Wahrscheinlichkeit, dass gilt oder dass gilt 100%.
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
|
(MS-Office) |
(anderes Office) | ||
|---|---|---|---|
|
(Informatiklehrer) | 0,05 | ||
|
(andere) | 0,95 | ||
| 1 |
Aus der Information von der Teilgruppe mit "Informatiklehrer" sind es
82% kann man die Wahrscheinlichkeit
=
0,05 ⋅
0,82 =
0,041 berechnen.
|
(MS-Office) |
(anderes Office) | ||
|---|---|---|---|
|
(Informatiklehrer) | 0,041 | 0,05 | |
|
(andere) | 0,95 | ||
| 1 |
Aus der Information von der Teilgruppe mit "andere" sind es
93% kann man die Wahrscheinlichkeit
|
(MS-Office) |
(anderes Office) | ||
|---|---|---|---|
|
(Informatiklehrer) | 0,041 | 0,05 | |
|
(andere) | 0,8835 | 0,95 | |
| 1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
|
(MS-Office) |
(anderes Office) | ||
|---|---|---|---|
|
(Informatiklehrer) | 0,009 | 0,041 | 0,05 |
|
(andere) | 0,8835 | 0,0665 | 0,95 |
| 0,8925 | 0,1075 | 1 |
Der gesuchte Wert, Prozentsatz an MS-Office, ist also 0.8925 = 89.25%.
VFT Anwend. prozentual (schwerer)
Beispiel:
Bei einer neuen Viruskrankkeit, geht man davon aus, dass 2,26% der Bevölkerung diese nicht überleben. In einem Land sind 93% der Bevölkerung nicht älter als 80 Jahre. Von denen, die die Viruskrankheit nicht überleben, sind 46,46% über 80 Jahre alt. Wie groß ist die Wahrscheinlichkeit, dass ein zufällig ausgewählter Infizierter nicht älter als 80 ist und die Krankheit überlebt?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
Hiermit ergibt sich folgende Vierfeldertafel:
|
(sterben) |
(überleben) | ||
|---|---|---|---|
|
(über 80) | |||
|
(höchstens 80) | 0,93 | ||
| 0,0226 |
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
|
(sterben) |
(überleben) | ||
|---|---|---|---|
|
(über 80) | 0,07 | ||
|
(höchstens 80) | 0,93 | ||
| 0,0226 | 0,9774 | 1 |
Aus der Information von der Teilgruppe mit "sterben" sind es
46.46% kann man die Wahrscheinlichkeit
|
(sterben) |
(überleben) | ||
|---|---|---|---|
|
(über 80) | 0,0105 | 0,07 | |
|
(höchstens 80) | 0,93 | ||
| 0,0226 | 0,9774 | 1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
|
(sterben) |
(überleben) | ||
|---|---|---|---|
|
(über 80) | 0,0105 | 0,0595 | 0,07 |
|
(höchstens 80) | 0,0121 | 0,9179 | 0,93 |
| 0,0226 | 0,9774 | 1 |
Der gesuchte Wert, die Wahrscheinlichkeit für unter 80 Jahre und Krankheit überleben, ist also 0.9179 = 91.79%.
bedingte Wahrsch. (nur Zahlen)
Beispiel:
Gegeben ist die vollständige Vierfeldertafel. Berechne die bedingte Wahrscheinlichkeit
| | | ||
|---|---|---|---|
| | 137 | 33 | 170 |
| | 111 | 90 | 201 |
| 248 | 123 | 371 |
Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob
(Danach geht's dann ja - je nach Ausgang von
Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
oder hier im speziellen:
also
bedingte Wahrsch. (nur Prozente)
Beispiel:
Gegeben ist die vollständige Vierfeldertafel. Berechne die bedingte Wahrscheinlichkeit
| | | ||
|---|---|---|---|
| | 0,31 | 0,35 | 0,66 |
| | 0,1 | 0,24 | 0,34 |
| 0,41 | 0,59 | 1 |
Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob
(Danach geht's dann ja - je nach Ausgang von
Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
oder hier im speziellen:
0,34 ⋅ x
= 0,1 = |:0,34
also
bedingte Wahrsch. Anwendungen
Beispiel:
Mit der Arbeit des Regierungschefs eines Staates sind von den Anhängern seiner eigenen Partei, deren Anteil 38% der Bevölkerung ausmacht, 42% zufrieden. Bei denen, die aber keine Anhängern dessen Partei sind, liegen die Zustimmungswerte nur bei 25%. Wie viel Prozent derjenigen, die mit der Arbeit des Regierungschefs zufrieden sind, sind auch Anhänger seiner Partei?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
Hiermit ergibt sich folgende Vierfeldertafel:
|
(zufrieden) |
(unzufrieden) | ||
|---|---|---|---|
|
(eigene Partei) | 0,38 | ||
|
(andere Partei) | |||
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
|
(zufrieden) |
(unzufrieden) | ||
|---|---|---|---|
|
(eigene Partei) | 0,38 | ||
|
(andere Partei) | 0,62 | ||
| 1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "eigene Partei" sind es 42%, also
die Wahrscheinlichkeit
berechnen.
|
(zufrieden) |
(unzufrieden) | ||
|---|---|---|---|
|
(eigene Partei) | 0,1596 | 0,38 | |
|
(andere Partei) | 0,62 | ||
| 1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "andere Partei" sind es 25%, also
die Wahrscheinlichkeit
berechnen.
|
(zufrieden) |
(unzufrieden) | ||
|---|---|---|---|
|
(eigene Partei) | 0,1596 | 0,38 | |
|
(andere Partei) | 0,155 | 0,62 | |
| 1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
|
(zufrieden) |
(unzufrieden) | ||
|---|---|---|---|
|
(eigene Partei) | 0,1596 | 0,2204 | 0,38 |
|
(andere Partei) | 0,155 | 0,465 | 0,62 |
| 0,3146 | 0,6854 | 1 |
Gesucht ist ja "der Anteil der Parteianhänger unter allen. die mit dem Regierungschef zufrieden sind", also die Wahrscheinlichkeit für
Um diese Wahrscheinlichkeit (bzw. prozentualer Anteil) zu bestimmmen, müssen wir nun das Baumdiagramm anders rum zeichnen. Das ist ja aber kein Problem, weil wir bereits die fertige Vierfeldertafel ausgefüllt haben.
Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob
(Danach geht's dann ja - je nach Ausgang von
Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
oder hier im speziellen:
0,3146 ⋅ x
= 0,1596 = |:0,3146
also
Der gesuchte Wert (der Anteil der Parteianhänger unter allen. die mit dem Regierungschef zufrieden sind) ist also 0,5073 = 50,73%.
Stochast. Unabhängigkeit Anwendungen
Beispiel:
Nach einer Umfrage könnten sich 19% der Befragten vorstellen, sich als nächstes Auto ein Elektroauto zu kaufen. 44% davon seien auch schon einmal in einem E-Auto gefahren. 56,7% der Befragten meinten, dass sie noch nie in einem E-Auto gesessen sind und sich sicher auch nie eines kaufen werden. Vervollständige die Vierfeldertafel und entscheide damit, ob die beiden Ereignisse "E-Auto kaufen" und "Erfahrung mit E-Auto" stochastisch unabhängig sind.
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
Hiermit ergibt sich folgende Vierfeldertafel:
|
(E-Auto kennen) |
(nicht kennen) | ||
|---|---|---|---|
|
(E-Auto kaufen) | 0,19 | ||
|
(nicht kaufen) | 0,567 | ||
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
|
(E-Auto kennen) |
(nicht kennen) | ||
|---|---|---|---|
|
(E-Auto kaufen) | 0,19 | ||
|
(nicht kaufen) | 0,243 | 0,567 | 0,81 |
| 1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "E-Auto kaufen" sind es 44%, also
die Wahrscheinlichkeit
berechnen.
|
(E-Auto kennen) |
(nicht kennen) | ||
|---|---|---|---|
|
(E-Auto kaufen) | 0,0836 | 0,19 | |
|
(nicht kaufen) | 0,243 | 0,567 | 0,81 |
| 1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
|
(E-Auto kennen) |
(nicht kennen) | ||
|---|---|---|---|
|
(E-Auto kaufen) | 0,0836 | 0,1064 | 0,19 |
|
(nicht kaufen) | 0,243 | 0,567 | 0,81 |
| 0,3266 | 0,6734 | 1 |
Jetzt können wir P(A)=0.19 mit P(B)=0.327 multiplizieren um zu überprüfen, ob dieses Produkt ungefähr den gleichen Wert hat wie
P(A ∩ B)=0.084, also:
P(A) ⋅ P(B) = 0.19 ⋅ 0.327 = 0.0621 ≈ 0.062
≠ 0.084 = P(A ∩ B),
A und B sind also stochastisch abhängig.
Stochast. Unabhängigkeit rückwärts
Beispiel:
Vervollständige die Vierfeldertafel so, dass die beiden Ereignisse A und B stochastisch unabhängig sind.
Als erstes tragen wir rechts unten die Summe
|
|
| ||
|---|---|---|---|
|
| 0,35 | ||
|
| 0,3575 | ||
| 1 |
In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
0.35 + P(
Somit gilt: P(
|
|
| ||
|---|---|---|---|
|
| 0,35 | ||
|
| 0,3575 | 0,65 | |
| 1 |
Weil wir ja wissen, dass die beiden Ereignisse A und B (und damit auch
also 0.65 ⋅
somit gilt:
|
|
| ||
|---|---|---|---|
|
| 0,35 | ||
|
| 0,3575 | 0,65 | |
| 0,55 | 1 |
Jetzt können wir einfach mit den Summen die Vierfeldertafel vollends wie üblich füllen.
|
|
| ||
|---|---|---|---|
|
| 0,1575 | 0,1925 | 0,35 |
|
| 0,2925 | 0,3575 | 0,65 |
| 0,45 | 0,55 | 1 |
Stochast. Unabhängigkeit rw (Anwend.)
Beispiel:
Bei einer groß angelegten Blitzeraktion wird bei 390 Autos die Geschwindigkeit gemessen. Von den Autos, die nicht zu den E-Autos zählen, werden 39 mit zu hoher Geschwindigkeit geblitzt. Insgesamt fuhren 156 E-Autos durch die Geschwindigkeitskontrolle. Man kann davon ausgehen, dass die beiden Ereignisse "Antriebsart des Auto" und "Geschwindigkeitsübertretung" stochastisch unabhängig sind. Wie viele Autos insgesamt fuhren mit angemessener Geschwindigkeit und wurden nicht geblitzt?
Als erstes tragen wir die Werte, die man aus dem Text herauslesen kann in einer Vierfeldertafel ein:
|
(geblitzte Autos) |
(nicht geblitzte Autos) | ||
|---|---|---|---|
|
(E-Autos) | 156 | ||
|
(Verbrenner) | 39 | ||
| 390 |
In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
156 + H(
Somit gilt: H(
|
(geblitzte Autos) |
(nicht geblitzte Autos) | ||
|---|---|---|---|
|
(E-Autos) | 156 | ||
|
(Verbrenner) | 39 | 234 | |
| 390 |
Wir erkennen nun, dass der Anteil von "geblitzte Autos" in der Zeile "Verbrenner"
Weil die beiden Ereignisse A und B stochastisch unabhängig sind, muss dann in allen Zeilen der prozentuale Anteil von "geblitzte Autos" auch
Für den Wert in der Randzeile ergibt sich also
|
(geblitzte Autos) |
(nicht geblitzte Autos) | ||
|---|---|---|---|
|
(E-Autos) | 156 | ||
|
(Verbrenner) | 39 | 234 | |
| 65 | 390 |
Jetzt können wir einfach mit den Summen die Vierfeldertafel vollends wie üblich füllen.
|
(geblitzte Autos) |
(nicht geblitzte Autos) | ||
|---|---|---|---|
|
(E-Autos) | 26 | 130 | 156 |
|
(Verbrenner) | 39 | 195 | 234 |
| 65 | 325 | 390 |
Die Anzahl der nicht geblitzten Autos ist somit 325
VFT Anwend. prozentual (mit Kombis)
Beispiel:
Mit der Arbeit des Regierungschefs eines Staates sind 29% der Bevölkerung zufrieden. 47% dieser Zufriedenen sind aber auch Anhänger seiner eigenen Partei. 80,12% der Bevölkerung sind keine Anhänger seiner Partei oder zufrieden mit der Arbeit des Regierungschefs. Wie viel Prozent der Bevölkerung sind Anhänger seiner Partei?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
Hiermit ergibt sich folgende Vierfeldertafel:
|
(eigene Partei) |
(andere Partei) | ||
|---|---|---|---|
|
(zufrieden) | 0,29 | ||
|
(unzufrieden) | |||
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
|
(eigene Partei) |
(andere Partei) | ||
|---|---|---|---|
|
(zufrieden) | 0,29 | ||
|
(unzufrieden) | 0,71 | ||
| 1 |
Aus der Information von der Teilgruppe mit "zufrieden" sind es
47% kann man die Wahrscheinlichkeit
|
(eigene Partei) |
(andere Partei) | ||
|---|---|---|---|
|
(zufrieden) | 0,1363 | 0,29 | |
|
(unzufrieden) | 0,71 | ||
| 1 |
Die 80.12% von "zufrieden oder andere Partei" verteilen sich ja auf die drei Felder von
also auf alle vier Felder außer
0,8012 =
Damit gilt:
|
(eigene Partei) |
(andere Partei) | ||
|---|---|---|---|
|
(zufrieden) | 0,1363 | 0,29 | |
|
(unzufrieden) | 0,1988 | 0,71 | |
| 1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
|
(eigene Partei) |
(andere Partei) | ||
|---|---|---|---|
|
(zufrieden) | 0,1363 | 0,1537 | 0,29 |
|
(unzufrieden) | 0,1988 | 0,5112 | 0,71 |
| 0,3351 | 0,6649 | 1 |
Der gesuchte Wert, der Prozentsatz von Anhänger der Partei, ist also 0.3351 = 33.51%.
