Aufgabenbeispiele von Bogenmaß

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Winkel im Bogenmaß angeben

Beispiel:

Gib den Winkel α = 15° im Bogenmaß x an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

15° sind aber nur ein 15° 360° Kreis, also ist die gesuchte Bogenlänge x zu 15° auch nur 15° 360° ⋅ 2π = 15 180 ⋅ π.

Jetzt müssen wir nur noch kürzen:

x = 15° 180° ⋅π = 3 36 ⋅π = 1 12 ⋅π

vom Bogenmaß ins Gradmaß

Beispiel:

Gib den Winkel x = 19 6 π im Gradnmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π dem Gradmaß 180°.

19 6 π entspricht also dem Gradmaß 19 6 ⋅180° = 570°

vom Bogenmaß ins Gradmaß (WTR)

Beispiel:

Gib den Winkel x = 1.9 im Gradnmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π ≈ 3,14 dem Gradmaß 180°.

1.9 = 1.9 π ⋅π entspricht also dem Gradmaß 1.9 π ⋅180° ≈ 108.9°

sin, cos Einheitskreis (Bogenmaß)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme näherungsweise cos( - 3 2 π ).

Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen

Lösung einblenden

- 3 2 π bedeutet - 3 4 eines Kreises, also - 3 4 von 360° = -270°.

Bei negativen Winkel muss man einfach in die andere Richtung, also im Urzeigersinn, im Einheitskreis vorgehen. Dabei landet man dann natürlich wieder an der gleichen Stelle wie bei -270° + 360° = 90°

Am Einheitskreis kann man den Wert für cos( - 3 2 π ) bzw. für cos(-270°) ablesen:

cos - 3 2 π ) bzw. cos(-270°) ist der x-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die Länge der orangen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (grüne) senkrechte Linie zur x-Aches verfolgt:

cos( - 3 2 π °) ≈ -0

gleiche sin- oder cos-Werte (Bogenmaß)

Beispiel:

Gib die beiden Winkel zwischen 0 und 2π an, die den gleichen Kosinuswert haben wie x = 23 6 π.

Lösung einblenden
canvas

Zuerst suchen wir den Winkel zwischem 0 und 2π, der im Einheitskreis an der selben Stelle steht wie 23 6 π. Dazu subtrahieren wir einfach 2π (= 12 6 π) vom gegebenen Winkel: 23 6 π - 12 6 π = 11 6 π.

Somit gilt x1 = 11 6 π.

Die andere Stelle muss nun an einer anderen Stelle im Einheitskreis liegen.

Wie beim Gradmaß erkennt man auch hier, dass die beiden Winkel mit gleichen Kosinuns-Werten symmetrisch bezüglich der x-Achse liegen, so dass man also x2 einfach als x2 = - x1 berechnen kann.

Weil ja aber auch der zweite Winkel zwischen 0 und 2π liegen muss, nehmen wir statt - 11 6 π einfach - 11 6 π + 2 π = 1 6 π für x2.

Somit gilt: x1 = 11 6 π und x2 = 1 6 π und

Theoreitsch kann man aber auch den Umweg über das Gradmaß gehen.
Dazu rechnet man dann zuerst mal den Winkel 23 6 π als 23 6 ⋅ 180° = 690° ins Gradmaß um und subtrahieren 360° um den Winkel zwischem 0° und 360° zu bekommen. Es gilt also = 330°.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Man erkennt am Schaubild rechts, dass die beiden Winkel mit dem gleichen Kosinuswert (oranger waagrechter Strich) symmetrisch zur x-Achse liegen.

Wenn man also den (braunen) Ausgangswinkel 330° an der x-Achse spiegelt, erhält man doch einfach den negativen Winkel -330°, also eben in die falsche Richtung gedreht: mit dem Uhrzeiger und unten rum.

Da wir ja aber einen positiven Winkel suchen, müssen wir eben wieder eine volle Umdrehung draufaddieren:

β = -330° + 360° = 30°

Wenn man nun α und β wieder ins Bogenmaß umrechnet, erhält man die beiden Lösungen: x1 = 11 6 π und x2 = 1 6 π

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = -0,5

Lösung einblenden
canvas
sin( x ) = -0,5 |sin-1(⋅)

Der WTR liefert nun als Wert -0.5235987755983

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;6.2831853071796) suchen, addieren wir einfach noch 2π dazu und erhalten so 11 6 π

1. Fall:

x1 = 11 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 11 6 π =-2.618 bzw. bei -2.618+2π= 7 6 π liegen muss.

2. Fall:

x2 = 7 6 π

L={ 7 6 π ; 11 6 π }