Aufgabenbeispiele von Bogenmaß

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Winkel im Bogenmaß angeben

Beispiel:

Gib den Winkel α = 30° im Bogenmaß x an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

30° sind aber nur ein 30° 360° Kreis, also ist die gesuchte Bogenlänge x zu 30° auch nur 30° 360° ⋅ 2π = 30 180 ⋅ π.

Jetzt müssen wir nur noch kürzen:

x = 30° 180° ⋅π = 1 6 ⋅π

vom Bogenmaß ins Gradmaß

Beispiel:

Gib den Winkel x = 1 2 π im Gradnmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π dem Gradmaß 180°.

1 2 π entspricht also dem Gradmaß 1 2 ⋅180° = 90°

vom Bogenmaß ins Gradmaß (WTR)

Beispiel:

Gib den Winkel x = 0.7 im Gradnmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π ≈ 3,14 dem Gradmaß 180°.

0.7 = 0.7 π ⋅π entspricht also dem Gradmaß 0.7 π ⋅180° ≈ 40.1°

sin, cos Einheitskreis (Bogenmaß)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme näherungsweise cos( 11 10 π ).

Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen

Lösung einblenden

11 10 π bedeutet 11 20 eines Kreises, also 11 20 von 360° = 198°.

Am Einheitskreis kann man den Wert für cos( 11 10 π ) bzw. für cos(198°) ablesen:

cos 11 10 π ) bzw. cos(198°) ist der x-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die Länge der orangen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (grüne) senkrechte Linie zur x-Aches verfolgt:

cos( 11 10 π °) ≈ -0.95

gleiche sin- oder cos-Werte (Bogenmaß)

Beispiel:

Gib die beiden Winkel zwischen 0 und 2π an, die den gleichen Sinuswert haben wie x = - 19 12 π.

Lösung einblenden
canvas

Zuerst suchen wir den Winkel zwischem 0 und 2π, der im Einheitskreis an der selben Stelle steht wie - 19 12 π. Dazu addieren wir einfach 2π (= 24 12 π) zum gegebenen Winkel: - 19 12 π + 24 12 π = 5 12 π.

Somit gilt x1 = 5 12 π.

Die andere Stelle muss nun an einer anderen Stelle im Einheitskreis liegen.

Wie beim Gradmaß erkennt man auch hier, dass die beiden Winkel mit gleichen Sinus-Werten symmetrisch bezüglich der y-Achse liegen, so dass man also x2 einfach als x2 = π - x1, also π - 5 12 π = 7 12 π berechnen kann.

Somit gilt: x1 = 5 12 π und x2 = 7 12 π und

Theoreitsch kann man aber auch den Umweg über das Gradmaß gehen.
Dazu rechnet man dann zuerst mal den Winkel - 19 12 π als - 19 12 ⋅ 180° = -285° ins Gradmaß um und addieren 360° um den Winkel zwischem 0° und 360° zu bekommen. Es gilt also = 75°.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Man erkennt am Schaubild rechts, dass die beiden Winkel mit dem gleichen Sinuswert (grüner senkrechter Strich) symmetrisch zur y-Achse liegen.

Wenn man also den (braunen) Ausgangswinkel 75° an der y-Achse spiegelt, erhält man wieder 75°, allerdings diesemal zwischen der negativen x-Achse und dem pinken Strich. Den gesuchten Winkel misst man ja aber immer zwischen der positiven x-Achse und dem Strich, und das ist dann ja gerade das was noch zu den 180° fehlt:

Wir können also immer einfach 180°- den gegebenen Winkel rechnen, um auf den Winkel mit dem gleichen Sinuswert zu kommen: hier also

β = 180° - 75° = 105°

Wenn man nun α und β wieder ins Bogenmaß umrechnet, erhält man die beiden Lösungen: x1 = 5 12 π und x2 = 7 12 π

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = -0,95

Lösung einblenden
canvas
sin( x ) = -0,95 |sin-1(⋅)

Der WTR liefert nun als Wert -1.2532358975034

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;6.2831853071796) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,03

1. Fall:

x1 = 5,03

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,95 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.95 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,03 =-1.8884 bzw. bei -1.8884+2π= 4,395 liegen muss.

2. Fall:

x2 = 4,395

L={ 4,395 ; 5,03 }