Aufgabenbeispiele von Bogenmaß

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Winkel im Bogenmaß angeben

Beispiel:

Gib den Winkel α = 90° im Bogenmaß x an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

90° sind aber nur ein 90° 360° Kreis, also ist die gesuchte Bogenlänge x zu 90° auch nur 90° 360° ⋅ 2π = 90 180 ⋅ π.

Jetzt müssen wir nur noch kürzen:

x = 90° 180° ⋅π = 3 6 ⋅π = 1 2 ⋅π

vom Bogenmaß ins Gradmaß

Beispiel:

Gib den Winkel x = 5 3 π im Gradnmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π dem Gradmaß 180°.

5 3 π entspricht also dem Gradmaß 5 3 ⋅180° = 300°

vom Bogenmaß ins Gradmaß (WTR)

Beispiel:

Gib den Winkel x = 4.5 im Gradnmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π ≈ 3,14 dem Gradmaß 180°.

4.5 = 4.5 π ⋅π entspricht also dem Gradmaß 4.5 π ⋅180° ≈ 257.8°

sin, cos Einheitskreis (Bogenmaß)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme näherungsweise sin( π ).

Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen

Lösung einblenden

π bedeutet 1 2 eines Kreises, also 1 2 von 360° = 180°.

Am Einheitskreis kann man den Wert für sin( π ) bzw. für sin(180°) ablesen:

sin( π ) bzw. sin(180°) ist der y-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die Länge der grünen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (orange) waagrechte Linie zur y-Aches verfolgt:

sin( π °) ≈ 0

gleiche sin- oder cos-Werte (Bogenmaß)

Beispiel:

Gib die beiden Winkel zwischen 0 und 2π an, die den gleichen Sinuswert haben wie x = - 7 6 π.

Lösung einblenden
canvas

Zuerst suchen wir den Winkel zwischem 0 und 2π, der im Einheitskreis an der selben Stelle steht wie - 7 6 π. Dazu addieren wir einfach 2π (= 12 6 π) zum gegebenen Winkel: - 7 6 π + 12 6 π = 5 6 π.

Somit gilt x1 = 5 6 π.

Die andere Stelle muss nun an einer anderen Stelle im Einheitskreis liegen.

Wie beim Gradmaß erkennt man auch hier, dass die beiden Winkel mit gleichen Sinus-Werten symmetrisch bezüglich der y-Achse liegen, so dass man also x2 einfach als x2 = π - x1, also π - 5 6 π = 1 6 π berechnen kann.

Somit gilt: x1 = 5 6 π und x2 = 1 6 π und

Theoreitsch kann man aber auch den Umweg über das Gradmaß gehen.
Dazu rechnet man dann zuerst mal den Winkel - 7 6 π als - 7 6 ⋅ 180° = -210° ins Gradmaß um und addieren 360° um den Winkel zwischem 0° und 360° zu bekommen. Es gilt also = 150°.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Man erkennt am Schaubild rechts, dass die beiden Winkel mit dem gleichen Sinuswert (grüner senkrechter Strich) symmetrisch zur y-Achse liegen.

Wenn man also den (braunen) Ausgangswinkel 150° an der y-Achse spiegelt, erhält man wieder 150°, allerdings diesemal zwischen der negativen x-Achse und dem pinken Strich. Den gesuchten Winkel misst man ja aber immer zwischen der positiven x-Achse und dem Strich, und das ist dann ja gerade das was noch zu den 180° fehlt:

Wir können also immer einfach 180°- den gegebenen Winkel rechnen, um auf den Winkel mit dem gleichen Sinuswert zu kommen: hier also

β = 180° - 150° = 30°

Wenn man nun α und β wieder ins Bogenmaß umrechnet, erhält man die beiden Lösungen: x1 = 5 6 π und x2 = 1 6 π

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = -0,6

Lösung einblenden
canvas
sin( x ) = -0,6 |sin-1(⋅)

Der WTR liefert nun als Wert -0.64350110879328

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;6.2831853071796) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,64

1. Fall:

x1 = 5,64

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,6 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.6 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,64 =-2.4984 bzw. bei -2.4984+2π= 3,785 liegen muss.

2. Fall:

x2 = 3,785

L={ 3,785 ; 5,64 }