Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Sinus und Thaleskreis (leicht)
Beispiel:
Das große Dreieck ist gleichschenklig.
Der blaue Halbkreis hat einen Durchmesser von u = 5 cm.
Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 4.23 cm.
Bestimme die fehlende Winkelweite α.
Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.
Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)=
Damit folgt sin(β)==0.846 und somit β=57.8°
Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + φ = 180°.
Somit gilt φ = 90° - β° = 32.2°.
Wegen der Gleichschenkligkeit des großen Dreiecks muss nun aber β und (α+φ) gleich groß sein.
Mit α+32.2°=β=57.8° gilt nun: α = 25.6°
Sinus und Thaleskreis (schwer)
Beispiel:
Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.
Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.
Als Nebenwinkel von γ muss natürluch auch δ ein recher Winkel sein.
Aufgrund der Winkelsumme im zweiten Dreieck folgt δ + ε + 32° = 180°.
Daraus folgt ε = 180° - 90° - 32° = 58°.
Mit Hilfe der Gleichschenkligkeit des großen Dreiecks kann mann nun β bestimmen: Es gilt ε + 2⋅β = 180°. Daraus folgt β = = = 61°
Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:
Da g die Gegenkathete von β ist, gilt: sin(β)=sin(61°) =
Damit folgt g = sin(61°) ⋅ 6cm ≈ 5.2cm
Nun können wir im zweiten Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)=
Setzt man die bekannten Werte ein, so folgt sin(58°)=
Damit folgt: PQ = = 6.1cm
Trigonometrie Anwendungen
Beispiel:

Von einem Fenster in 10m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=70° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=30° gegenüber der Senkrechten. Wie breit ist der Kanal?

In beiden Dreiecken gilt für den Tangens: tan(α)=.
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=10 ⋅ tan(70°)
≈27.4748
Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=10 ⋅ tan(30°)
≈5.7735
Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=27.475 - 5.774 ≈ 21.701 m.
Winkel zw. Punkten im Koordinatensystem
Beispiel:
Berechne alle Längen und Winkel im Dreick ABC mit A(-2|-2), B(3|2) und C(-2|2).
Runde die Ergebnisse auf eine Nachkommastelle.
Wenn man die drei Punkte in ein Koordinatensystem einträgt erkennt man sofort, dass (zwischen B und C) a = 5 und (zwischen A und C) b = 4 sein müssen. Weil das Dreieck rechtwinklig ist, kann man c (zwischen A und B), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:
Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.c2 = 52 + 42
c2 = 25 + 16
c2 = 41
c = ≈ 6.4
Da a (zwischen B und C) und b (zwischen A und C) parallel zu den Koordinatenachsen sind, muss der Winkel in C γ = 90° sein.
Den Winkel α können wir mit dem Tangens berechnen:
tan(α) = = = 1.25
Daraus folgt: α = arctan(1.25) ≈ 51.3°.
Wegen der Winkelsumme von 180° im Dreieck folgt: β = 90°-51.3° = 38.7°
