Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Sinus und Thaleskreis (leicht)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig.

Der blaue Halbkreis hat einen Durchmesser von u = 5.5 cm.

Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 4.8 cm.

Bestimme die fehlende Winkelweite α.

Lösung einblenden

Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.

Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)= Gegenkathete Hypotenuse

Damit folgt sin(β)= 4.8cm 5.5cm =0.873 und somit β=60.8°

Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + α = 180°.
Somit gilt α = 90° - β° = 29.2°.

Sinus und Thaleskreis (schwer)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.

Lösung einblenden

Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.

Als Nebenwinkel von γ muss natürluch auch δ ein recher Winkel sein.

Aufgrund der Winkelsumme im zweiten Dreieck folgt δ + ε + 35° = 180°.

Daraus folgt ε = 180° - 90° - 35° = 55°.

Mit Hilfe der Gleichschenkligkeit des großen Dreiecks kann mann nun β bestimmen: Es gilt ε + 2⋅β = 180°. Daraus folgt β = 180° - ε 2 = 125° 2 = 62.5°

Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:

Da g die Gegenkathete von β ist, gilt: sin(β)=sin(62.5°) = g 6cm

Damit folgt g = sin(62.5°) ⋅ 6cm ≈ 5.3cm

Nun können wir im zweiten Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)= g PQ

Setzt man die bekannten Werte ein, so folgt sin(55°)= 5.3 PQ

Damit folgt: PQ = 5.3 sin(55°) = 6.5cm

Trigonometrie Anwendungen

Beispiel:

Von einem Fenster in 14m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=60° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=35° gegenüber der Senkrechten. Wie breit ist der Kanal?

Lösung einblenden

In beiden Dreiecken gilt für den Tangens: tan(α)= Gegenkathete Ankathete .
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=14 ⋅ tan(60°) ≈24.2487

Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=14 ⋅ tan(35°) ≈9.8029

Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=24.249 - 9.803 ≈ 14.446 m.

Winkel zw. Punkten im Koordinatensystem

Beispiel:

Berechne alle Längen und Winkel im Dreick ABC mit A(0|-3), B(5|3) und C(0|3).

Runde die Ergebnisse auf eine Nachkommastelle.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wenn man die drei Punkte in ein Koordinatensystem einträgt erkennt man sofort, dass (zwischen B und C) a = 5 und (zwischen A und C) b = 6 sein müssen. Weil das Dreieck rechtwinklig ist, kann man c (zwischen A und B), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:

Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.

c2 = 52 + 62

c2 = 25 + 36

c2 = 61

c = 61 7.81

Da a (zwischen B und C) und b (zwischen A und C) parallel zu den Koordinatenachsen sind, muss der Winkel in C γ = 90° sein.

Den Winkel α können wir mit dem Tangens berechnen:

tan(α) = Gegenkathete Ankathete = 5 6 ≈ 0.833

Daraus folgt: α = arctan(0.833) ≈ 39.8°.

Wegen der Winkelsumme von 180° im Dreieck folgt: β = 90°-39.8° = 50.2°