Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Sinus und Thaleskreis (leicht)
Beispiel:
Das große Dreieck ist gleichschenklig.
Der blaue Halbkreis hat einen Durchmesser von u = 5.5 cm.
Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 4.8 cm.
Bestimme die fehlende Winkelweite α.
Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.
Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)=
Damit folgt sin(β)==0.873 und somit β=60.8°
Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + α = 180°.
Somit gilt α = 90° - β° = 29.2°.
Sinus und Thaleskreis (schwer)
Beispiel:
Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.
Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.
Als Nebenwinkel von γ muss natürluch auch δ ein recher Winkel sein.
Aufgrund der Winkelsumme im zweiten Dreieck folgt δ + ε + 35° = 180°.
Daraus folgt ε = 180° - 90° - 35° = 55°.
Mit Hilfe der Gleichschenkligkeit des großen Dreiecks kann mann nun β bestimmen: Es gilt ε + 2⋅β = 180°. Daraus folgt β = = = 62.5°
Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:
Da g die Gegenkathete von β ist, gilt: sin(β)=sin(62.5°) =
Damit folgt g = sin(62.5°) ⋅ 6cm ≈ 5.3cm
Nun können wir im zweiten Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)=
Setzt man die bekannten Werte ein, so folgt sin(55°)=
Damit folgt: PQ = = 6.5cm
Trigonometrie Anwendungen
Beispiel:

Von einem Fenster in 14m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=60° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=35° gegenüber der Senkrechten. Wie breit ist der Kanal?

In beiden Dreiecken gilt für den Tangens: tan(α)=.
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=14 ⋅ tan(60°)
≈24.2487
Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=14 ⋅ tan(35°)
≈9.8029
Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=24.249 - 9.803 ≈ 14.446 m.
Winkel zw. Punkten im Koordinatensystem
Beispiel:
Berechne alle Längen und Winkel im Dreick ABC mit A(0|-3), B(5|3) und C(0|3).
Runde die Ergebnisse auf eine Nachkommastelle.
Wenn man die drei Punkte in ein Koordinatensystem einträgt erkennt man sofort, dass (zwischen B und C) a = 5 und (zwischen A und C) b = 6 sein müssen. Weil das Dreieck rechtwinklig ist, kann man c (zwischen A und B), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:
Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.c2 = 52 + 62
c2 = 25 + 36
c2 = 61
c = ≈ 7.81
Da a (zwischen B und C) und b (zwischen A und C) parallel zu den Koordinatenachsen sind, muss der Winkel in C γ = 90° sein.
Den Winkel α können wir mit dem Tangens berechnen:
tan(α) = = ≈ 0.833
Daraus folgt: α = arctan(0.833) ≈ 39.8°.
Wegen der Winkelsumme von 180° im Dreieck folgt: β = 90°-39.8° = 50.2°
