Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Sinus und Thaleskreis (leicht)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig.

Der blaue Halbkreis hat einen Durchmesser von u = 5 cm.

Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 4.53 cm.

Bestimme die fehlende Winkelweite α.

Lösung einblenden

Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.

Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)= Gegenkathete Hypotenuse

Damit folgt sin(β)= 4.53cm 5cm =0.906 und somit β=65°

Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + φ = 180°.
Somit gilt φ = 90° - β° = 25°.

Wegen der Gleichschenkligkeit des großen Dreiecks muss nun aber β und (α+φ) gleich groß sein.

Mit α+25°=β=65° gilt nun: α = 39.9°

Sinus und Thaleskreis (schwer)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.

Lösung einblenden

Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.

Aufgrund der Winkelsumme im ersten Dreieck folgt β + γ + 30° = 180°.

Daraus folgt β = 180° - 90° - 30° = 60°

Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:

Da g die Gegenkathete von β ist, gilt: sin(β)=sin(60°) = g 5.5cm

Damit folgt g = sin(60°) ⋅ 5.5cm ≈ 4.8cm

Als Nebenwinkel von γ muss natürlich auch δ ein rechter Winkel sein.

Aufgrund der Gleichschenkligkeit des großen Dreiecks muss β und (α+30°) gleich groß sein. Damit gilt 60° = α + 30°, woraus folgt: α = 30°

Mit der Winkelsumme im zweiten Dreieck folgt nun ε = 90° - α = 90° - 30° = 60°

Nun können wir in diesem Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)= g PQ

Setzt man die bekannten Werte ein, so folgt sin(60°)= 4.8 PQ

Damit folgt: PQ = 4.8 sin(60°) ≈ 5.5cm

Trigonometrie Anwendungen

Beispiel:

Von einem Fenster in 8m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=60° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=25° gegenüber der Senkrechten. Wie breit ist der Kanal?

Lösung einblenden

In beiden Dreiecken gilt für den Tangens: tan(α)= Gegenkathete Ankathete .
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=8 ⋅ tan(60°) ≈13.8564

Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=8 ⋅ tan(25°) ≈3.7305

Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=13.856 - 3.73 ≈ 10.126 m.

Winkel zw. Punkten im Koordinatensystem

Beispiel:

Berechne alle Längen und Winkel im Dreick ABC mit A(-2|0), B(5|0) und C(5|4).

Runde die Ergebnisse auf eine Nachkommastelle.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wenn man die drei Punkte in ein Koordinatensystem einträgt erkennt man sofort, dass (zwischen B und C) a = 4 und (zwischen A und B) c = 7 sein müssen. Weil das Dreieck rechtwinklig ist, kann man b (zwischen A und C), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:

Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.

b2 = 42 + 72

b2 = 16 + 49

b2 = 65

b = 65 8.06

Da a (zwischen B und C) und c (zwischen A und B) parallel zu den Koordinatenachsen sind, muss der Winkel in B β = 90° sein.

Den Winkel α können wir mit dem Tangens berechnen:

tan(α) = Gegenkathete Ankathete = 4 7 ≈ 0.571

Daraus folgt: α = arctan(0.571) ≈ 29.7°.

Wegen der Winkelsumme von 180° im Dreieck folgt: γ = 90°-29.7° = 60.3°