Aufgabenbeispiele von im rechtwinkl. Dreieck

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Gegenkathete berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von b.

Lösung einblenden

Nach der Definition des Sinus gilt sin(β)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(55°)= b 6.8cm

Multipliziert man nun mit 6.8cm, so folgt: b=sin(55°)*6.8cm

Also gilt b=5.57

Hypothenuse berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von b.

Lösung einblenden

Nach der Definition des Sinus gilt sin(γ)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(29°)= 3.4cm b

Multipliziert man nun mit b und teilt durch sin(29°),

so folgt: b= 3.4cm sin(29°)

Also gilt b=7.01

Winkel berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite β.

Lösung einblenden

Nach der Definition des Sinus gilt sin(β)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(β)= 3.4cm 7.4cm =0.459

Daraus ergibt sich β=27.35°

Ankathete berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von c.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(β)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(39°)= c 7.3cm

Multipliziert man nun mit 7.3cm, so folgt: c=cos(39°)*7.3cm

Also gilt c=5.67

Hypothenuse berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von b.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(α)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(62°)= 3.2cm b

Multipliziert man nun mit b und teilt durch cos(62°),

so folgt: b= 3.2cm cos(62°)

Also gilt b=6.82

Winkel berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite α.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(α)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(α)= 4.5cm 6.6cm =0.682

Daraus ergibt sich α = 47.01°

Ankathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Tangens gilt tan(β) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(39°) = 4.8cm a

Multipliziert man nun mit 4.8cm und teilt durch tan(39°), so folgt:

a = 4.8cm tan(39°)

Also gilt a = 5.93cm

Gegenkathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Tangens gilt tan(α) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(58°) = a 4.1cm

Multipliziert man nun mit 4.1cm, so folgt:

a = tan(58°)*4.1cm

Also gilt a = 6.56cm

Winkel berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite α.

Lösung einblenden

Nach der Definition des Tangens gilt tan(α) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(α) = 6.1cm 3.5cm =1.743

Daraus folgt: α = 60.15°

Ankathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Tangens gilt tan(β) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(34°) = 4.4cm a

Multipliziert man nun mit 4.4cm und teilt durch tan(34°), so folgt:

a = 4.4cm tan(34°)

Also gilt a = 6.52cm