Aufgabenbeispiele von im rechtwinkl. Dreieck

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Gegenkathete berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von b.

Lösung einblenden

Nach der Definition des Sinus gilt sin(β)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(34°)= b 7.7cm

Multipliziert man nun mit 7.7cm, so folgt: b=sin(34°)*7.7cm

Also gilt b=4.31

Hypothenuse berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von c.

Lösung einblenden

Nach der Definition des Sinus gilt sin(β)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(48°)= 4.9cm c

Multipliziert man nun mit c und teilt durch sin(48°),

so folgt: c= 4.9cm sin(48°)

Also gilt c=6.59

Winkel berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite γ.

Lösung einblenden

Nach der Definition des Sinus gilt sin(γ)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(γ)= 5.7cm 7cm =0.814

Daraus ergibt sich γ=54.52°

Ankathete berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(β)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(60°)= a 6.8cm

Multipliziert man nun mit 6.8cm, so folgt: a=cos(60°)*6.8cm

Also gilt a=3.4

Hypothenuse berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von c.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(α)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(32°)= 6cm c

Multipliziert man nun mit c und teilt durch cos(32°),

so folgt: c= 6cm cos(32°)

Also gilt c=7.08

Winkel berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite α.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(α)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(α)= 3.3cm 7.8cm =0.423

Daraus ergibt sich α = 64.97°

Ankathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Tangens gilt tan(β) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(35°) = 3.7cm a

Multipliziert man nun mit 3.7cm und teilt durch tan(35°), so folgt:

a = 3.7cm tan(35°)

Also gilt a = 5.28cm

Gegenkathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Tangens gilt tan(α) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(64°) = a 2.6cm

Multipliziert man nun mit 2.6cm, so folgt:

a = tan(64°)*2.6cm

Also gilt a = 5.33cm

Winkel berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite α.

Lösung einblenden

Nach der Definition des Tangens gilt tan(α) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(α) = 4.7cm 6.5cm =0.723

Daraus folgt: α = 35.87°

Ankathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Tangens gilt tan(γ) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(32°) = 3.4cm a

Multipliziert man nun mit 3.4cm und teilt durch tan(32°), so folgt:

a = 3.4cm tan(32°)

Also gilt a = 5.44cm