Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach s hat er bereits 3 m zurückgelegt. Wie weit ist er nach Sekunden?
=
=
=
=
=
=
=
=
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 2 Minuten sind 13 Liter im Tank. Wieviel Liter sind nach 4 Minuten darin?
=
=
=
≈ 1614,821
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
| = | | | ||
| = | |||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |:() | ||
| = |
Mittelwerte
Beispiel:
Die Temperatur an einem Wintertag kann näherungsweise durch die Funktion f mit f(x)= beschrieben werden. Bestimme die Durchschnittstemperatur zwischen und .
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
=
≈ 3,183
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)= schließt mit der x-Achse, der Geraden x=5 und der y-Achse eine nach oben bzw. unten offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
Für u → 0 (u>0, also von rechts) gilt: A(u) = →
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Wassermenge im Tank) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
| = | | | ||
| = | |⋅ | ||
| = | | | ||
| t1 | = |
|
=
|
| t2 | = |
|
=
|
Wir wissen nun, dass zum Zeitpunkt t = 2 der Bestand (Wassermenge im Tank) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 2,667
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 2,667 m³
Wenn der maximale Bestand (Wassermenge im Tank) aber 50 m³ ist müssen ja zu Beginn bereits 50 m³ - 2,667 m³ ≈ 47,333 m³ vorhanden gewesen sein.
Der Anfangs-Wassermenge im Tank betrug demnach B0 = 47,333 m³.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Sekunden ist der Vorsprung von Radfahrer1 gegenüber Radfahrer2 am größten?
- Nach wie vielen Sekunden ist der Vorsprung von Radfahrer1 gegenüber Radfahrer2 am kleinsten?
Man erkennt schnell, dass von 0 bis 1 die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers liegt, so dass hier der Vorsprung des 1. Radfahrers zunimmt.
Von 1 bis 5 liegt dann die Geschwindigkeit des 2. Radfahrers über der Geschwindigkeit des 1. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers abnimmt.
Von 5 bis 10 liegt dann wieder die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 1.2
Meter
von 1 bis 5: ca. -5.3 Meter
- Zeitpunkt des größten Bestands
Nachdem der Vorsprung des 1. Radfahrers zwischen t = 0 und t = 1 zugenommen hat, ist die Abnahme zwischen t = 1 und t = 5 deutlich kleiner als der Zuwachs zwischen t = 5 und t = 10, so dass der Höchststand erst bei t = 10 erreicht wird.
Somit wird der Vorsprung des 1. Radfahrers bei t = 10 s maximal. - Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 1 weniger Zuwachs abzulesen ist als die Abnahme zwischen 1 und 5, ist der Zeitpunkt mit dem geringsten Bestand wenn die Zuwachsrate wieder größer wird als die Abnahmerate, also bei t = 5 s.
