Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 5 Minuten sind 20 Liter im Tank. Wieviel Liter sind nach 7 Minuten darin?
=
=
=
=
=
=
=
≈ 0,182
Integralanwendungen
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach s hat er bereits 17 m zurückgelegt. Wie weit ist er nach Sekunden?
=
=
=
=
=
=
=
=
=
≈ 25,333
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
| = | | | ||
| = | |||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |: | ||
| = |
Mittelwerte
Beispiel:
Bestimme den Mittelwert der Funktionswerte von f mit f(x)= zwischen 0 und 2.
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
=
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)= schließt mit der x-Achse, der Geraden x=3 und der Geraden x=1 eine nach oben bzw. unten offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
=
Für u → 1 (u>1, also von rechts) gilt: A(u) = →
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Höhe des Fahrstuhls) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
| = | | | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |:() | ||
| = |
Wir wissen nun, dass zum Zeitpunkt t = 3 der Bestand (Höhe des Fahrstuhls) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
=
≈ 1,865
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 1,865 m
Wenn der maximale Bestand (Höhe des Fahrstuhls) aber 60 m ist müssen ja zu Beginn bereits 60 m - 1,865 m ≈ 58,135 m vorhanden gewesen sein.
Der Anfangs-Höhe des Fahrstuhls betrug demnach B0 = 58,135 m.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Minuten ist am wenigsten Wasser im Tank?
- Der geringste Inhalt an Litern Wasser im abgebildeten Zeitraum sind ca. 18,1. Bestimme den Inhalt des Tanks in Litern Wasser bei Beobachtungsbeginn.
Man erkennt schnell, dass von 0 bis 1 die Zuflussrate über der Abflussrate liegt, so dass hier das Wasservolumen zunimmt.
Von 1 bis 7 liegt dann die Abflussrate über der Zuflussrate, so dass hier das Wasservolumen abnimmt.
Von 7 bis 10 liegt dann wieder die Zuflussrate über der Abflussrate, so dass hier das Wasservolumen wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 1.1
Liter
von 1 bis 7: ca. -12 Liter
- Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 1 weniger Zuwachs abzulesen ist als die Abnahme zwischen 1 und 7, ist der Zeitpunkt mit dem geringsten Bestand wenn die Zuwachsrate wieder größer wird als die Abnahmerate, also bei t = 7 min.
- Anfangsbestand
Da das Wasservolumen zwischen t = 0 und seinem Tiefstand bei t = 7 (bevor es danach wieder zunimmt) erst 1.1 Liter zu- und dann wieder 12 Liter abgenommen hat, also insgesamt um |1.1-12| = 10.9 Liter weniger wurde, muss es beim Beobachtungsbeginn t = 0 bereits 18.1+10.9 = 29 Liter betragen haben.
