Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach 3s hat er bereits 7 m zurückgelegt. Wie weit ist er nach 4 Sekunden?
=
=
=
=
=
=
=
=
≈ 0,007
Integralanwendungen
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach 2s hat er bereits 10 m zurückgelegt. Wie weit ist er nach 5 Sekunden?
=
=
=
=
≈ 2,773
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass
=
=
=
Diese Integralfunktion soll ja den Wert
|
|
= |
|
|
|
|
|
= |
|
|
|
|
= | |: |
|
|
|
= | |ln(⋅) | |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Mittelwerte
Beispiel:
Bestimme den Mittelwert der Funktionswerte von f mit f(x)=
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
≈ 0,811
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)=
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
=
Für u → ∞ gilt: A(u) =
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Höhe des Fahrstuhls) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
|
|
= | |
|
|
|
|
= | |⋅
|
|
|
|
= | |
|
|
| t1 | = |
|
=
|
| t2 | = |
|
=
|
Wir wissen nun, dass zum Zeitpunkt t = 6 der Bestand (Höhe des Fahrstuhls) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 24 m
Wenn der maximale Bestand (Höhe des Fahrstuhls) aber 60 m ist müssen ja zu Beginn bereits 60 m - 24 m ≈ 36 m vorhanden gewesen sein.
Der Anfangs-Höhe des Fahrstuhls betrug demnach B0 = 36 m.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Sekunden ist der Vorsprung von Radfahrer1 gegenüber Radfahrer2 am kleinsten?
- 2 Sekunden nach Beobachtungsbeginn ist Radfahrer1 ca. 20,2 Meter vor Radfahrer2. Bestimme den Vorsprung von Radfahrer1 auf Radfahrer2 bei Beobachtungsbeginn.
Man erkennt schnell, dass von 0 bis 1 die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers liegt, so dass hier der Vorsprung des 1. Radfahrers zunimmt.
Von 1 bis 7 liegt dann die Geschwindigkeit des 2. Radfahrers über der Geschwindigkeit des 1. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers abnimmt.
Von 7 bis 10 liegt dann wieder die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 1.1
Meter
von 1 bis 7: ca. -12 Meter
- Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 1 weniger Zuwachs abzulesen ist als die Abnahme zwischen 1 und 7, ist der Zeitpunkt mit dem geringsten Bestand wenn die Zuwachsrate wieder größer wird als die Abnahmerate, also bei t = 7 s.
- Anfangsbestand
Die Änderung des Bestands kann man einfach durch die Flächen zwischen dem Kurven ablesen, wobei man hier natürlich die Vorzeichen übernehmen muss. Durch Abzählen der Kästchen der eingeschlossenen Flächen im Interval [0;2] kann man einen Zuwachs von ca. 0.2 erkennen.
Bei Beobachtungsbeginn muss somit der Vorsprung des 1. Radfahrers um 0.2 Meter niedriger als die 20.2 nach 2 s gewesen sein:
B0 = 20.2 - 0.2 = 20 Meter .
