Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 2 Minuten sind 15 Liter im Tank. Wieviel Liter sind nach 4 Minuten darin?
=
=
=
≈ 2,35
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 4 Minuten sind 18 Liter im Tank. Wieviel Liter sind nach 7 Minuten darin?
=
=
=
=
=
=
=
= 2,25
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
| = | | | ||
| = | |||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |: | ||
| = |
Mittelwerte
Beispiel:
Die Menge an Wasser in einem Wassertank zur Zeit x (in min) kann näherungsweise durch die Funktion f mit f(x)= beschrieben werden. Wieviel Wasser sind während der ersten 5 Minuten durchschnittlich im Tank?
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
≈ 3241,086
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)= schließt mit der x-Achse und der Geraden x=3 eine nach rechts offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
Für u → ∞ gilt: A(u) =
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Wassermenge im Tank) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
|
|
= | |
|
|
|
|
= | |: |
|
|
|
= | |ln(⋅) | |
|
|
= |
|
|
= | |
|
|
|
|
= |
|
|:( |
|
|
= |
|
Wir wissen nun, dass zum Zeitpunkt t = 6 der Bestand (Wassermenge im Tank) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 16,802
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 16,802 m³
Wenn der maximale Bestand (Wassermenge im Tank) aber 60 m³ ist müssen ja zu Beginn bereits 60 m³ - 16,802 m³ ≈ 43,198 m³ vorhanden gewesen sein.
Der Anfangs-Wassermenge im Tank betrug demnach B0 = 43,198 m³.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Stunden sind die meisten Besucher auf dem Festival-Gelände?
- Bei Beobachtungsbeginn sind ca. 30,1 Hundert Personen auf dem Festival-Gelände. Bestimme die niedrigste Besucherzahl auf dem Festival-Gelände im abgebildeten Zeitraum.
Man erkennt schnell, dass von 0 bis 1 die Eintrittsrate ins Festival-Gelände über der Austrittssrate aus dem Festival-Gelände liegt, so dass hier die Menge der Besucher auf dem Festival-Gelände zunimmt.
Von 1 bis 5 liegt dann die Austrittssrate aus dem Festival-Gelände über der Eintrittsrate ins Festival-Gelände, so dass hier die Menge der Besucher auf dem Festival-Gelände abnimmt.
Von 5 bis 10 liegt dann wieder die Eintrittsrate ins Festival-Gelände über der Austrittssrate aus dem Festival-Gelände, so dass hier die Menge der Besucher auf dem Festival-Gelände wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 1.2
Hundert Personen
von 1 bis 5: ca. -5.3 Hundert Personen
- Zeitpunkt des größten Bestands
Nachdem die Menge der Besucher auf dem Festival-Gelände zwischen t = 0 und t = 1 zugenommen hat, ist die Abnahme zwischen t = 1 und t = 5 deutlich kleiner als der Zuwachs zwischen t = 5 und t = 10, so dass der Höchststand erst bei t = 10 erreicht wird.
Somit wird die Menge der Besucher auf dem Festival-Gelände bei t = 10 Stunden maximal. - kleinster Bestand
Da die Menge der Besucher auf dem Festival-Gelände zwischen t = 0 und t = 5 erst 1.2 Hundert Personen zu- und dann wieder 5.3 Hundert Personen abgenommen hat, muss der geringste Bestand zum Zeitpunkt t =5 sein (bevor es danach wieder zunimmt). Für diesen minimalen Bestand gilt dann:
B5 = 30.1+1.2-5.3 = 26 Hundert Personen .
