Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Bei einer Bakterienkultur geht man von einer Wachstumsrate von Bakterien pro Minute zur Zeit x (in Minuten) aus. Zu Zeitpunkt x=2 sind 46 Bakterien vorhanden. Wie viele sind es nach 5 Minuten?
=
=
=
=
≈ 8102,084
Integralanwendungen
Beispiel:
Bei einer Bakterienkultur geht man von einer Wachstumsrate von Bakterien pro Minute zur Zeit x (in Minuten) aus. Zu Zeitpunkt x=1 sind 27 Bakterien vorhanden. Wie viele sind es nach 3 Minuten?
=
=
=
≈ 108,926
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 3 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
| = | | | ||
| = | |: | ||
| = | | | ||
| u1 | = |
|
=
|
| u2 | = |
|
=
|
Da u=
Mittelwerte
Beispiel:
Bestimme den Mittelwert der Funktionswerte von f mit f(x)=
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
=
=
=
≈ 22,593
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)=
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
Für u → ∞ gilt: A(u) =
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Höhe des Fahrstuhls) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
Wir wissen, dass bei der Sinus-Funktion die fallende Nullstelle nach einer halben Periode ist.
Die Periode von f ist p =
Da beim Sinus die Teilflächen über und unter der x-Achse gleich groß sind, wird dieser maximale Bestand zwar noch zu anderen Zeitpunkten erreicht, aber nie übertroffen.
Wir wissen nun, dass zum Zeitpunkt t = 2 der Bestand (Höhe des Fahrstuhls) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 2,546
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 2,546 m
Wenn der maximale Bestand (Höhe des Fahrstuhls) aber 50 m ist müssen ja zu Beginn bereits 50 m - 2,546 m ≈ 47,454 m vorhanden gewesen sein.
Der Anfangs-Höhe des Fahrstuhls betrug demnach B0 = 47,454 m.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Sekunden ist der Vorsprung von Radfahrer1 gegenüber Radfahrer2 am größten?
- Der geringste Vorsprung von Radfahrer1 auf Radfahrer2 ist im abgebildeten Zeitraum ca. 17,9 Meter. Bestimme den Vorsprung von Radfahrer1 auf Radfahrer2 bei Beobachtungsbeginn.
- Wie viele Meter ist der Radfahrer1 in den ersten 3 Sekunden gefahren?
Man erkennt schnell, dass von 0 bis 1 die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers liegt, so dass hier der Vorsprung des 1. Radfahrers zunimmt.
Von 1 bis 5 liegt dann die Geschwindigkeit des 2. Radfahrers über der Geschwindigkeit des 1. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers abnimmt.
Von 5 bis 10 liegt dann wieder die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 1.2
Meter
von 1 bis 5: ca. -5.3 Meter
- Zeitpunkt des größten Bestands
Nachdem der Vorsprung des 1. Radfahrers zwischen t = 0 und t = 1 zugenommen hat, ist die Abnahme zwischen t = 1 und t = 5 deutlich kleiner als der Zuwachs zwischen t = 5 und t = 10, so dass der Höchststand erst bei t = 10 erreicht wird.
Somit wird der Vorsprung des 1. Radfahrers bei t = 10 s maximal. - Anfangsbestand
Da der Vorsprung des 1. Radfahrers zwischen t = 0 und seinem Tiefstand bei t = 5 (bevor es danach wieder zunimmt) erst 1.2 Meter zu- und dann wieder 5.3 Meter abgenommen hat, also insgesamt um |1.2-5.3| = 4.1 Meter weniger wurde, muss es beim Beobachtungsbeginn t = 0 bereits 17.9+4.1 = 22 Meter betragen haben.
- reiner Zuwachs nach 3 s
Da ja die blaue Kurve der Graph der Zunahme darstellt, müssen wir einfach die Fläche zwischen der blauen Kurve und der x-Achse im Intervall [0;3] ablesen. Diese ist ca. Z3 = 13.6 Meter .
