Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Bei einer Bakterienkultur geht man von einer Wachstumsrate von Bakterien pro Minute zur Zeit x (in Minuten) aus. Zu Zeitpunkt x=0 sind 28 Bakterien vorhanden. Wie viele sind es nach 3 Minuten?
=
=
=
≈ 2,583
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 2 Minuten sind 18 Liter im Tank. Wieviel Liter sind nach 5 Minuten darin?
=
=
=
=
≈ 2734,787
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
| = | | | ||
| = | |||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |: | ||
| = |
Mittelwerte
Beispiel:
Die Menge an Wasser in einem Wassertank zur Zeit x (in min) kann näherungsweise durch die Funktion f mit f(x)= beschrieben werden. Wieviel Wasser sind während der ersten 5 Minuten durchschnittlich im Tank?
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
≈ 3241,233
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)= schließt mit der x-Achse und der Geraden x= eine nach rechts offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
=
Für u → ∞ gilt: A(u) = →
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Höhe des Fahrstuhls) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
Wir wissen, dass bei der Sinus-Funktion die fallende Nullstelle nach einer halben Periode ist.
Die Periode von f ist p =
=
8. Somit ist die fallende Nullstelle nach einer halben Periode bei t = 4.
Da beim Sinus die Teilflächen über und unter der x-Achse gleich groß sind, wird dieser maximale Bestand zwar noch zu anderen Zeitpunkten erreicht, aber nie übertroffen.
Wir wissen nun, dass zum Zeitpunkt t = 4 der Bestand (Höhe des Fahrstuhls) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 5,093
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 5,093 m
Wenn der maximale Bestand (Höhe des Fahrstuhls) aber 40 m ist müssen ja zu Beginn bereits 40 m - 5,093 m ≈ 34,907 m vorhanden gewesen sein.
Der Anfangs-Höhe des Fahrstuhls betrug demnach B0 = 34,907 m.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Bei Beobachtungsbeginn sind ca. 31,2 Liter Wasser im Tank. Bestimme den kleinstmöglichen Inhalt an Liter Wasser im abgebildeten Zeitraum.
- Nach wie vielen Minuten ist am meisten Wasser im Tank?
Man erkennt schnell, dass von 0 bis 1 die Zuflussrate über der Abflussrate liegt, so dass hier das Wasservolumen zunimmt.
Von 1 bis 9 liegt dann die Abflussrate über der Zuflussrate, so dass hier das Wasservolumen abnimmt.
Von 9 bis 10 liegt dann wieder die Zuflussrate über der Abflussrate, so dass hier das Wasservolumen wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 0.5
Liter
von 1 bis 9: ca. -10.7 Liter
von 9 bis 10: ca. 0.5 Liter
- kleinster Bestand
Da das Wasservolumen zwischen t = 0 und t = 9 erst 0.5 Liter zu- und dann wieder 10.7 Liter abgenommen hat, muss der geringste Bestand zum Zeitpunkt t =9 sein (bevor es danach wieder zunimmt). Für diesen minimalen Bestand gilt dann:
B9 = 31.2+0.5-10.7 = 21 Liter . - Zeitpunkt des größten Bestands
Nachdem das Wasservolumen zwischen t = 0 und t = 1 zugenommen hat, ist die Abnahme zwischen t = 1 und t = 9 jedoch größer als der Zuwachs zwischen t = 9 und t = 10, so dass der Höchststand von t = 1 nicht wieder erreicht wird.
Somit wird das Wasservolumen bei t = 1 min maximal.
