Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 0 Minuten sind 14 Liter im Tank. Wieviel Liter sind nach 2 Minuten darin?
=
=
=
≈ 0,865
Integralanwendungen
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach 4s hat er bereits 18 m zurückgelegt. Wie weit ist er nach 7 Sekunden?
=
=
=
=
≈ 1,716
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass
=
=
=
=
Diese Integralfunktion soll ja den Wert
|
|
= | |:
|
|
|
|
= | |
|
|
| u1 | = |
|
=
|
| u2 | = |
|
=
|
Da u=
Mittelwerte
Beispiel:
Die Menge an Wasser in einem Wassertank zur Zeit x (in min) kann näherungsweise durch die Funktion f mit f(x)=
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
≈ 18,545
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)=
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
Für u → 0 (u>0, also von rechts) gilt: A(u) =
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Höhe des Fahrstuhls) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
Wir wissen, dass bei der Sinus-Funktion die fallende Nullstelle nach einer halben Periode ist.
Die Periode von f ist p =
Da beim Sinus die Teilflächen über und unter der x-Achse gleich groß sind, wird dieser maximale Bestand zwar noch zu anderen Zeitpunkten erreicht, aber nie übertroffen.
Wir wissen nun, dass zum Zeitpunkt t = 10 der Bestand (Höhe des Fahrstuhls) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 31,831
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 31,831 m
Wenn der maximale Bestand (Höhe des Fahrstuhls) aber 50 m ist müssen ja zu Beginn bereits 50 m - 31,831 m ≈ 18,169 m vorhanden gewesen sein.
Der Anfangs-Höhe des Fahrstuhls betrug demnach B0 = 18,169 m.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Minuten ist am meisten Wasser im Tank?
- Nach wie vielen Minuten ist am wenigsten Wasser im Tank?
Man erkennt schnell, dass von 0 bis 1 die Zuflussrate über der Abflussrate liegt, so dass hier das Wasservolumen zunimmt.
Von 1 bis 5 liegt dann die Abflussrate über der Zuflussrate, so dass hier das Wasservolumen abnimmt.
Von 5 bis 10 liegt dann wieder die Zuflussrate über der Abflussrate, so dass hier das Wasservolumen wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 1.2
Liter
von 1 bis 5: ca. -5.3 Liter
- Zeitpunkt des größten Bestands
Nachdem das Wasservolumen zwischen t = 0 und t = 1 zugenommen hat, ist die Abnahme zwischen t = 1 und t = 5 deutlich kleiner als der Zuwachs zwischen t = 5 und t = 10, so dass der Höchststand erst bei t = 10 erreicht wird.
Somit wird das Wasservolumen bei t = 10 min maximal. - Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 1 weniger Zuwachs abzulesen ist als die Abnahme zwischen 1 und 5, ist der Zeitpunkt mit dem geringsten Bestand wenn die Zuwachsrate wieder größer wird als die Abnahmerate, also bei t = 5 min.
