Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach s hat er bereits 19 m zurückgelegt. Wie weit ist er nach Sekunden?
=
=
=
=
=
=
=
Integralanwendungen
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach 2s hat er bereits 4 m zurückgelegt. Wie weit ist er nach 3 Sekunden?
=
=
=
=
=
=
=
=
= 0,375
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 1 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
| = | | | ||
| = | |: | ||
| = | | | ||
| u1 | = |
|
=
|
| u2 | = |
|
=
|
Da u=
Mittelwerte
Beispiel:
Bestimme den Mittelwert der Funktionswerte von f mit f(x)=
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
=
=
=
=
≈ 4,519
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)=
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
=
Für u → 1 (u>1, also von rechts) gilt: A(u) =
Für den Flächeninhalt (immer positiv) gilt also I = 2
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Wassermenge im Tank) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
|
|
= | |
|
|
|
|
= | |: |
|
|
|
= | |ln(⋅) | |
|
|
= |
|
|
= | |
|
|
|
|
= |
|
|:( |
|
|
= |
|
Wir wissen nun, dass zum Zeitpunkt t = 2 der Bestand (Wassermenge im Tank) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 2,873
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 2,873 m³
Wenn der maximale Bestand (Wassermenge im Tank) aber 45 m³ ist müssen ja zu Beginn bereits 45 m³ - 2,873 m³ ≈ 42,127 m³ vorhanden gewesen sein.
Der Anfangs-Wassermenge im Tank betrug demnach B0 = 42,127 m³.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Sekunden ist der Vorsprung von Radfahrer1 gegenüber Radfahrer2 am kleinsten?
- Der geringste Vorsprung von Radfahrer1 auf Radfahrer2 ist im abgebildeten Zeitraum ca. 12,1 Meter. Bestimme den Vorsprung von Radfahrer1 auf Radfahrer2 bei Beobachtungsbeginn.
- Wie viele Meter ist der Radfahrer1 in den ersten 2 Sekunden gefahren?
Man erkennt schnell, dass von 0 bis 1 die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers liegt, so dass hier der Vorsprung des 1. Radfahrers zunimmt.
Von 1 bis 7 liegt dann die Geschwindigkeit des 2. Radfahrers über der Geschwindigkeit des 1. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers abnimmt.
Von 7 bis 10 liegt dann wieder die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 1.1
Meter
von 1 bis 7: ca. -12 Meter
- Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 1 weniger Zuwachs abzulesen ist als die Abnahme zwischen 1 und 7, ist der Zeitpunkt mit dem geringsten Bestand wenn die Zuwachsrate wieder größer wird als die Abnahmerate, also bei t = 7 s.
- Anfangsbestand
Da der Vorsprung des 1. Radfahrers zwischen t = 0 und seinem Tiefstand bei t = 7 (bevor es danach wieder zunimmt) erst 1.1 Meter zu- und dann wieder 12 Meter abgenommen hat, also insgesamt um |1.1-12| = 10.9 Meter weniger wurde, muss es beim Beobachtungsbeginn t = 0 bereits 12.1+10.9 = 23 Meter betragen haben.
- reiner Zuwachs nach 2 s
Da ja die blaue Kurve der Graph der Zunahme darstellt, müssen wir einfach die Fläche zwischen der blauen Kurve und der x-Achse im Intervall [0;2] ablesen. Diese ist ca. Z2 = 8.5 Meter .
