Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Integralanwendungen BF

Beispiel:

Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= 4 ( x -1 ) 4 (in m/s, x in Sekunden) beschreiben. Nach 2s hat er bereits 3 m zurückgelegt. Wie weit ist er nach 5 Sekunden?

Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen 2 und 5:
2 5 4 ( x -1 ) 4 x
= 2 5 4 ( x -1 ) -4 x

= [ - 4 3 ( x -1 ) -3 ] 2 5

= [ - 4 3 ( x -1 ) 3 ] 2 5

= - 4 3 ( 5 -1 ) 3 + 4 3 ( 2 -1 ) 3

= - 4 3 4 3 + 4 3 1 3

= - 4 3 ( 1 64 ) + 4 3 1

= - 1 48 + 4 3

= - 1 48 + 64 48

= 21 16


≈ 1,313
Der neue Bestand setzt sich aus dem Anfangsbestand bei 2 und der Änderung zwischen 2 und 5 zusammen:
B = 3 + 21 16 = 69 16 ≈ 4.31

Integralanwendungen

Beispiel:

Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= 1 ( x -1 ) 2 (in m/s, x in Sekunden) beschreiben. Nach 3s hat er bereits 8 m zurückgelegt. Wie weit ist er nach 4 Sekunden?

Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen 3 und 4:
3 4 1 ( x -1 ) 2 x
= 3 4 ( x -1 ) -2 x

= [ - ( x -1 ) -1 ] 3 4

= [ - 1 x -1 ] 3 4

= - 1 4 -1 + 1 3 -1

= - 1 3 + 1 2

= -( 1 3 ) + 1 2

= 1 6


≈ 0,167
Der neue Bestand setzt sich aus dem Anfangsbestand bei 3 und der Änderung zwischen 3 und 4 zusammen:
B = 8 + 1 6 = 49 6 ≈ 8.17

Integralfunktion - Gleichung

Beispiel:

Bestimme u > 0 so, dass 0 u 1,8 e -0,3x +0,8 x = 5

Lösung einblenden
0 u 1,8 e -0,3x +0,8 x

= [ -6 e -0,3x +0,8 ] 0 u

= -6 e -0,3u +0,8 +6 e -0,30 +0,8

= -6 e -0,3u +0,8 +6 e 0 +0,8

= -6 e -0,3u +0,8 +6 e 0,8

Diese Integralfunktion soll ja den Wert 5 annehmen, deswegen setzen wir sie gleich :

-6 e -0,3u +0,8 +6 e 0,8 = 5 | -6 e 0,8
-6 e -0,3u +0,8 = -6 e 0,8 +5
-6 e -0,3u +0,8 = -8,3532 |:-6
e -0,3u +0,8 = 1,3922 |ln(⋅)
-0,3u +0,8 = ln( 1,3922 )
-0,3u +0,8 = 0,3309 | -0,8
-0,3u = -0,4691 |:(-0,3 )
u = 1,5637

Mittelwerte

Beispiel:

Bestimme den Mittelwert der Funktionswerte von f mit f(x)= 4 3x -5 zwischen 2 und 3.

Lösung einblenden

Wir berechnen den Mittelwert mit der üblichen Formel:

m = 1 3 -2 2 3 4 3x -5 x
= 1 2 3 4 ( 3x -5 ) -1 x

= 1 [ 4 3 ln( | 3x -5 | ) ] 2 3

= 4 3 ln( | 33 -5 | ) - 4 3 ln( | 32 -5 | )

= 4 3 ln( | 9 -5 | ) - 4 3 ln( | 6 -5 | )

= 4 3 ln( 4 ) - 4 3 ln( | 6 -5 | )

= 4 3 ln( 4 ) - 4 3 ln( 1 )

= 4 3 ln( 4 ) +0

= 4 3 ln( 4 )


≈ 1,848

uneigentliche Integrale

Beispiel:

Der Graph der Funktion f mit f(x)= - 1 ( -2x +1 ) 2 schließt mit der x-Achse und der Geraden x=2 eine nach rechts offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.


Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
A(u)= 2 u - 1 ( -2x +1 ) 2 x
= 2 u - ( -2x +1 ) -2 x

= [ - 1 2 ( -2x +1 ) -1 ] 2 u

= [ - 1 2( -2x +1 ) ] 2 u

= - 1 2( -2u +1 ) + 1 2( -22 +1 )

= - 1 2( -2u +1 ) + 1 2( -4 +1 )

= - 1 2( -2u +1 ) + 1 2 ( -3 )

= - 1 2( -2u +1 ) + 1 2 ( - 1 3 )

= - 1 2( -2u +1 ) - 1 6

Für u → ∞ gilt: A(u) = - 1 2( -2u +1 ) - 1 6 0 - 1 6 = - 1 6 ≈ -0.167

Für den Flächeninhalt (immer positiv) gilt also I = 0.167

Maximaler Bestand rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Die Funktion f mit f(t)= e -0,2t +1,2 -1 beschreibt die Zu- bzw. Abflussrate von Wasser in einen Wassertank (f(t) in m³/min, t in Minuten nach Beobachtungsbeginn). Ihr Graph ist rechts abgebildet. Die maximale Wassermenge im Tank beträgt im abgebildeten Zeitraum 45 m³. Bestimme die Wassermenge im Tank zu Beobachtungsbeginn.

Lösung einblenden

Der maximale Bestand (Wassermenge im Tank) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.

e -0,2t +1,2 -1 = 0 | +1
e -0,2t +1,2 = 1 |ln(⋅)
-0,2t +1,2 = 0
-0,2t +1,2 = 0 | -1,2
-0,2t = -1,2 |:(-0,2 )
t = 6

Wir wissen nun, dass zum Zeitpunkt t = 6 der Bestand (Wassermenge im Tank) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
I = 0 6 ( e -0,2t +1,2 -1 ) t

= [ -5 e -0,2x +1,2 - x ] 0 6

= -5 e -0,26 +1,2 - 6 - ( -5 e -0,20 +1,2 - 0 )

= -5 e -1,2 +1,2 -6 - ( -5 e 0 +1,2 +0)

= -5 e 0 -6 - ( -5 e 1,2 +0)

= -5 -6 +5 e 1,2

= -11 +5 e 1,2


≈ 5,601

Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 5,601 m³

Wenn der maximale Bestand (Wassermenge im Tank) aber 45 m³ ist müssen ja zu Beginn bereits 45 m³ - 5,601 m³ ≈ 39,399 m³ vorhanden gewesen sein.

Der Anfangs-Wassermenge im Tank betrug demnach B0 = 39,399 m³.

minimaler + maximaler Bestand (2 Kurven)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Ein Wassertank hat einen Zu- und einen Abfluss. In der Abbildung zeigt der blaue Graph die momentane Zuflussrate in Liter pro Minute, der rote Graph die momentane Abflussrate (Liter pro Minute). Die x-Achse zeigt die Zeit in Minuten nach Beobachtungsbeginn. Betrachtet wird nur der Zeitraum zwischen 0 und 10 Minuten nach Beobachtungsbeginn.
  1. Der geringste Inhalt an Litern Wasser im abgebildeten Zeitraum sind ca. 15,8. Bestimme den Inhalt des Tanks in Litern Wasser bei Beobachtungsbeginn.
  2. Nach wie vielen Minuten ist am meisten Wasser im Tank?

Lösung einblenden

Man erkennt schnell, dass von 0 bis 1 die Zuflussrate über der Abflussrate liegt, so dass hier das Wasservolumen zunimmt.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Von 1 bis 9 liegt dann die Abflussrate über der Zuflussrate, so dass hier das Wasservolumen abnimmt.

Von 9 bis 10 liegt dann wieder die Zuflussrate über der Abflussrate, so dass hier das Wasservolumen wieder zunimmt.

Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 0.5 Liter
von 1 bis 9: ca. -10.7 Liter

von 9 bis 10: ca. 0.5 Liter

  1. Anfangsbestand

    Da das Wasservolumen zwischen t = 0 und seinem Tiefstand bei t = 9 (bevor es danach wieder zunimmt) erst 0.5 Liter zu- und dann wieder 10.7 Liter abgenommen hat, also insgesamt um |0.5-10.7| = 10.2 Liter weniger wurde, muss es beim Beobachtungsbeginn t = 0 bereits 15.8+10.2 = 26 Liter betragen haben.

  2. Zeitpunkt des größten Bestands

    Nachdem das Wasservolumen zwischen t = 0 und t = 1 zugenommen hat, ist die Abnahme zwischen t = 1 und t = 9 jedoch größer als der Zuwachs zwischen t = 9 und t = 10, so dass der Höchststand von t = 1 nicht wieder erreicht wird.
    Somit wird das Wasservolumen bei t = 1 min maximal.