Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 2 Minuten sind 3 Liter im Tank. Wieviel Liter sind nach 3 Minuten darin?
=
=
=
≈ 70,814
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach Minuten sind 7 Liter im Tank. Wieviel Liter sind nach Minuten darin?
=
=
=
=
=
=
=
=
=
≈ 163,333
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
| = | | | ||
| = | |||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |:() | ||
| = |
Mittelwerte
Beispiel:
Die Menge an Wasser in einem Wassertank zur Zeit x (in min) kann näherungsweise durch die Funktion f mit f(x)= beschrieben werden. Wieviel Wasser sind während der ersten 1 Minuten durchschnittlich im Tank?
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
=
=
=
= 1,25
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)= schließt mit der x-Achse und der Geraden x=1 eine nach rechts offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
Für u → ∞ gilt: A(u) = →
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Wassermenge im Tank) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
| = | | | ||
| = | |⋅ | ||
| = | | | ||
| t1 | = |
|
=
|
| t2 | = |
|
=
|
Wir wissen nun, dass zum Zeitpunkt t = 3 der Bestand (Wassermenge im Tank) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 6 m³
Wenn der maximale Bestand (Wassermenge im Tank) aber 45 m³ ist müssen ja zu Beginn bereits 45 m³ - 6 m³ ≈ 39 m³ vorhanden gewesen sein.
Der Anfangs-Wassermenge im Tank betrug demnach B0 = 39 m³.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Sekunden ist der Vorsprung von Radfahrer1 gegenüber Radfahrer2 am kleinsten?
- Der größte Vorsprung von Radfahrer1 auf Radfahrer2 ist im abgebildeten Zeitraum ca. 33,5 Meter. Bestimme den Vorsprung von Radfahrer1 auf Radfahrer2 bei Beobachtungsbeginn.
Man erkennt schnell, dass von 0 bis 3 die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers liegt, so dass hier der Vorsprung des 1. Radfahrers zunimmt.
Von 3 bis 7 liegt dann die Geschwindigkeit des 2. Radfahrers über der Geschwindigkeit des 1. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers abnimmt.
Von 7 bis 10 liegt dann wieder die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 3: ca. 3.4
Meter
von 3 bis 7: ca. -1.3 Meter
von 7 bis 10: ca. 3.4 Meter
- Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 3 mehr Zuwachs abzulesen ist als die Abnahme zwischen 3 und 7, ist der Zeitpunkt mit dem geringsten Bestand gleich zu Beginn, also bei t = 0 s.
- Anfangsbestand
Da der Zuwachs zwischen t = 7 und t = 10 größer ist als die Abnahme zwischen t = 3 und t = 7, wird der maximale Bestand erst nach 10 s erreicht. Bis zu diesem Zeitpunkt hat sich der Vorsprung des 1. Radfahrers um 3.4 -1.3 + 3.4 = 5.5 Meter vermehrt.
Bei Beobachtungsbeginn muss somit der Vorsprung des 1. Radfahrers um 5.5 Meter niedriger als die maximalen 33.5 Meter gewesen sein:
B0 = 33.5 - 5.5 = 28 Meter .
