Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Bei einer Bakterienkultur geht man von einer Wachstumsrate von Bakterien pro Minute zur Zeit x (in Minuten) aus. Zu Zeitpunkt x=2 sind 20 Bakterien vorhanden. Wie viele sind es nach 3 Minuten?
=
=
=
=
≈ 34,587
Integralanwendungen
Beispiel:
Bei einer Bakterienkultur geht man von einer Wachstumsrate von Bakterien pro Minute zur Zeit x (in Minuten) aus. Zu Zeitpunkt x=2 sind 21 Bakterien vorhanden. Wie viele sind es nach 3 Minuten?
=
=
=
≈ 141,024
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 3 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
= | | | ||
= | |: | ||
= | | | ||
u1 | = |
|
=
|
u2 | = |
|
=
|
Da u=
Mittelwerte
Beispiel:
Die Temperatur an einem Wintertag kann näherungsweise durch die Funktion f mit f(x)=
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
=
≈ -0,212
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)=
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
Für u → ∞ gilt: A(u) =
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Höhe des Fahrstuhls) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
|
= | |
|
|
|
= | |: |
|
|
= | |ln(⋅) | |
|
= |
|
= | |
|
|
|
= |
|
|:( |
|
= |
|
Wir wissen nun, dass zum Zeitpunkt t = 3 der Bestand (Höhe des Fahrstuhls) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 5,596
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 5,596 m
Wenn der maximale Bestand (Höhe des Fahrstuhls) aber 55 m ist müssen ja zu Beginn bereits 55 m - 5,596 m ≈ 49,404 m vorhanden gewesen sein.
Der Anfangs-Höhe des Fahrstuhls betrug demnach B0 = 49,404 m.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Minuten ist am meisten Wasser im Tank?
- Nach wie vielen Minuten ist am wenigsten Wasser im Tank?
Man erkennt schnell, dass von 0 bis 1 die Zuflussrate über der Abflussrate liegt, so dass hier das Wasservolumen zunimmt.
Von 1 bis 9 liegt dann die Abflussrate über der Zuflussrate, so dass hier das Wasservolumen abnimmt.
Von 9 bis 10 liegt dann wieder die Zuflussrate über der Abflussrate, so dass hier das Wasservolumen wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 0.5
Liter
von 1 bis 9: ca. -10.7 Liter
- Zeitpunkt des größten Bestands
Nachdem das Wasservolumen zwischen t = 0 und t = 1 zugenommen hat, ist die Abnahme zwischen t = 1 und t = 9 jedoch größer als der Zuwachs zwischen t = 9 und t = 10, so dass der Höchststand von t = 1 nicht wieder erreicht wird.
Somit wird das Wasservolumen bei t = 1 min maximal. - Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 1 weniger Zuwachs abzulesen ist als die Abnahme zwischen 1 und 9, ist der Zeitpunkt mit dem geringsten Bestand wenn die Zuwachsrate wieder größer wird als die Abnahmerate, also bei t = 9 min.