Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach 3s hat er bereits 12 m zurückgelegt. Wie weit ist er nach 6 Sekunden?
=
=
=
=
=
≈ 0,938
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 2 Minuten sind 2 Liter im Tank. Wieviel Liter sind nach 4 Minuten darin?
=
=
=
≈ 98,697
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
= | | | ||
= | |||
= | |: | ||
= | |ln(⋅) | ||
= |
= | | | ||
= | |: | ||
= |
Mittelwerte
Beispiel:
Die Menge eines Wirkstoffs im Blut eines Patienten kann zur Zeit x (in min) näherungsweise durch die Funktion f mit f(x)= (in mg) beschrieben werden. Berechne die mittlere Wirkstoffmenge in mg zwischen Minute und Minute .
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
=
=
=
= 12,25
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)= schließt mit der x-Achse, der Geraden x=3 und der Geraden x=1 eine nach oben bzw. unten offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
Für u → 1 (u>1, also von rechts) gilt: A(u) = →
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Wassermenge im Tank) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
Wir wissen, dass bei der Sinus-Funktion die fallende Nullstelle nach einer halben Periode ist.
Die Periode von f ist p =
=
8. Somit ist die fallende Nullstelle nach einer halben Periode bei t = 4.
Da beim Sinus die Teilflächen über und unter der x-Achse gleich groß sind, wird dieser maximale Bestand zwar noch zu anderen Zeitpunkten erreicht, aber nie übertroffen.
Wir wissen nun, dass zum Zeitpunkt t = 4 der Bestand (Wassermenge im Tank) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 5,093
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 5,093 m³
Wenn der maximale Bestand (Wassermenge im Tank) aber 45 m³ ist müssen ja zu Beginn bereits 45 m³ - 5,093 m³ ≈ 39,907 m³ vorhanden gewesen sein.
Der Anfangs-Wassermenge im Tank betrug demnach B0 = 39,907 m³.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Minuten ist am wenigsten Wasser im Tank?
- Der geringste Inhalt an Litern Wasser im abgebildeten Zeitraum sind ca. 13,1. Bestimme den Inhalt des Tanks in Litern Wasser bei Beobachtungsbeginn.
- Wie viele Liter Wasser fließen in den ersten 3 Minuten in den Tank hinein?
Man erkennt schnell, dass von 0 bis 1 die Zuflussrate über der Abflussrate liegt, so dass hier das Wasservolumen zunimmt.
Von 1 bis 7 liegt dann die Abflussrate über der Zuflussrate, so dass hier das Wasservolumen abnimmt.
Von 7 bis 10 liegt dann wieder die Zuflussrate über der Abflussrate, so dass hier das Wasservolumen wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 1.1
Liter
von 1 bis 7: ca. -12 Liter
- Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 1 weniger Zuwachs abzulesen ist als die Abnahme zwischen 1 und 7, ist der Zeitpunkt mit dem geringsten Bestand wenn die Zuwachsrate wieder größer wird als die Abnahmerate, also bei t = 7 min.
- Anfangsbestand
Da das Wasservolumen zwischen t = 0 und seinem Tiefstand bei t = 7 (bevor es danach wieder zunimmt) erst 1.1 Liter zu- und dann wieder 12 Liter abgenommen hat, also insgesamt um |1.1-12| = 10.9 Liter weniger wurde, muss es beim Beobachtungsbeginn t = 0 bereits 13.1+10.9 = 24 Liter betragen haben.
- reiner Zuwachs nach 3 min
Da ja die blaue Kurve der Graph der Zunahme darstellt, müssen wir einfach die Fläche zwischen der blauen Kurve und der x-Achse im Intervall [0;3] ablesen. Diese ist ca. Z3 = 14.1 Liter .