Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach 4s hat er bereits 5 m zurückgelegt. Wie weit ist er nach 6 Sekunden?
=
=
=
=
=
=
=
=
≈ 0,188
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 1 Minuten sind 7 Liter im Tank. Wieviel Liter sind nach 4 Minuten darin?
=
=
=
≈ 148,045
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
=
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
| = | |: | ||
| = | | | ||
| u1 | = |
|
=
|
| u2 | = |
|
=
|
Da u=
Mittelwerte
Beispiel:
Bestimme den Mittelwert der Funktionswerte von f mit f(x)=
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
≈ 2,001
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)=
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
=
Für u → ∞ gilt: A(u) =
Für den Flächeninhalt (immer positiv) gilt also I = 0.75
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Wassermenge im Tank) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
|
|
= | |
|
|
|
|
= | |: |
|
|
|
= | |ln(⋅) | |
|
|
= |
|
|
= | |
|
|
|
|
= |
|
|:( |
|
|
= |
|
Wir wissen nun, dass zum Zeitpunkt t = 6 der Bestand (Wassermenge im Tank) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 11,201
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 11,201 m³
Wenn der maximale Bestand (Wassermenge im Tank) aber 50 m³ ist müssen ja zu Beginn bereits 50 m³ - 11,201 m³ ≈ 38,799 m³ vorhanden gewesen sein.
Der Anfangs-Wassermenge im Tank betrug demnach B0 = 38,799 m³.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Sekunden ist der Vorsprung von Radfahrer1 gegenüber Radfahrer2 am größten?
- Bei Beobachtungsbeginn ist der Radfahrer1 ca. 34,1 Meter vor Radfahrer2. Bestimme den kleinsten Vorsprung von Radfahrer1 auf Radfahrer2 im abgebildeten Zeitraum.
- Wie viele Meter ist der Radfahrer1 in den ersten 2 Sekunden gefahren?
Man erkennt schnell, dass von 0 bis 1 die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers liegt, so dass hier der Vorsprung des 1. Radfahrers zunimmt.
Von 1 bis 5 liegt dann die Geschwindigkeit des 2. Radfahrers über der Geschwindigkeit des 1. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers abnimmt.
Von 5 bis 10 liegt dann wieder die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 1.2
Meter
von 1 bis 5: ca. -5.3 Meter
- Zeitpunkt des größten Bestands
Nachdem der Vorsprung des 1. Radfahrers zwischen t = 0 und t = 1 zugenommen hat, ist die Abnahme zwischen t = 1 und t = 5 deutlich kleiner als der Zuwachs zwischen t = 5 und t = 10, so dass der Höchststand erst bei t = 10 erreicht wird.
Somit wird der Vorsprung des 1. Radfahrers bei t = 10 s maximal. - kleinster Bestand
Da der Vorsprung des 1. Radfahrers zwischen t = 0 und t = 5 erst 1.2 Meter zu- und dann wieder 5.3 Meter abgenommen hat, muss der geringste Bestand zum Zeitpunkt t =5 sein (bevor es danach wieder zunimmt). Für diesen minimalen Bestand gilt dann:
B5 = 34.1+1.2-5.3 = 30 Meter . - reiner Zuwachs nach 2 s
Da ja die blaue Kurve der Graph der Zunahme darstellt, müssen wir einfach die Fläche zwischen der blauen Kurve und der x-Achse im Intervall [0;2] ablesen. Diese ist ca. Z2 = 6 Meter .
