Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach Minuten sind 13 Liter im Tank. Wieviel Liter sind nach Minuten darin?
=
=
=
=
=
=
=
≈ 40,667
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 2 Minuten sind 14 Liter im Tank. Wieviel Liter sind nach 3 Minuten darin?
=
=
=
=
≈ 43,418
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
=
=
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
= | | |
= 0
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
u1,2 =
u1,2 =
u1 =
= =
u2 =
Da u=
Mittelwerte
Beispiel:
Die Menge eines Wirkstoffs im Blut eines Patienten kann zur Zeit x (in min) näherungsweise durch die Funktion f mit f(x)=
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
=
=
=
=
≈ 14,857
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)=
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
=
Für u → 3 (u>3, also von rechts) gilt: A(u) =
Für den Flächeninhalt (immer positiv) gilt also I = 1
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Wassermenge im Tank) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
|
= | |
|
|
|
= | |: |
|
|
= | |ln(⋅) | |
|
= |
|
= | |
|
|
|
= |
|
|:( |
|
= |
|
Wir wissen nun, dass zum Zeitpunkt t = 3 der Bestand (Wassermenge im Tank) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
=
≈ 3,731
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 3,731 m³
Wenn der maximale Bestand (Wassermenge im Tank) aber 55 m³ ist müssen ja zu Beginn bereits 55 m³ - 3,731 m³ ≈ 51,269 m³ vorhanden gewesen sein.
Der Anfangs-Wassermenge im Tank betrug demnach B0 = 51,269 m³.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Sekunden ist der Vorsprung von Radfahrer1 gegenüber Radfahrer2 am kleinsten?
- 2 Sekunden nach Beobachtungsbeginn ist Radfahrer1 ca. 31,3 Meter vor Radfahrer2. Bestimme den Vorsprung von Radfahrer1 auf Radfahrer2 bei Beobachtungsbeginn.
Man erkennt schnell, dass von 0 bis 4 die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers liegt, so dass hier der Vorsprung des 1. Radfahrers zunimmt.
Von 4 bis 8 liegt dann die Geschwindigkeit des 2. Radfahrers über der Geschwindigkeit des 1. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers abnimmt.
Von 8 bis 10 liegt dann wieder die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 4: ca. 6.7
Meter
von 4 bis 8: ca. -1.3 Meter
von 8 bis 10: ca. 1.3 Meter
- Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 4 mehr Zuwachs abzulesen ist als die Abnahme zwischen 4 und 8, ist der Zeitpunkt mit dem geringsten Bestand gleich zu Beginn, also bei t = 0 s.
- Anfangsbestand
Die Änderung des Bestands kann man einfach durch die Flächen zwischen dem Kurven ablesen, wobei man hier natürlich die Vorzeichen übernehmen muss. Durch Abzählen der Kästchen der eingeschlossenen Flächen im Interval [0;2] kann man einen Zuwachs von ca. 5.3 erkennen.
Bei Beobachtungsbeginn muss somit der Vorsprung des 1. Radfahrers um 5.3 Meter niedriger als die 31.3 nach 2 s gewesen sein:
B0 = 31.3 - 5.3 = 26 Meter .