Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 2 Minuten sind 12 Liter im Tank. Wieviel Liter sind nach 3 Minuten darin?
=
=
=
=
≈ 15,973
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 2 Minuten sind 2 Liter im Tank. Wieviel Liter sind nach 3 Minuten darin?
=
=
=
≈ 141,627
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
| = | | | ||
| = | |||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |:() | ||
| = |
Mittelwerte
Beispiel:
Die Menge eines Wirkstoffs im Blut eines Patienten kann zur Zeit x (in min) näherungsweise durch die Funktion f mit f(x)= (in mg) beschrieben werden. Berechne die mittlere Wirkstoffmenge in mg zwischen Minute und Minute .
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
=
=
=
=
=
≈ 16,333
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)= schließt mit der x-Achse und der y-Achse eine nach rechts offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
Für u → ∞ gilt: A(u) = → = ≈ 134.476
Für den Flächeninhalt (immer positiv) gilt also I = 134.476
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Wassermenge im Tank) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
Wir wissen, dass bei der Sinus-Funktion die fallende Nullstelle nach einer halben Periode ist.
Die Periode von f ist p =
=
20. Somit ist die fallende Nullstelle nach einer halben Periode bei t = 10.
Da beim Sinus die Teilflächen über und unter der x-Achse gleich groß sind, wird dieser maximale Bestand zwar noch zu anderen Zeitpunkten erreicht, aber nie übertroffen.
Wir wissen nun, dass zum Zeitpunkt t = 10 der Bestand (Wassermenge im Tank) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 31,831
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 31,831 m³
Wenn der maximale Bestand (Wassermenge im Tank) aber 40 m³ ist müssen ja zu Beginn bereits 40 m³ - 31,831 m³ ≈ 8,169 m³ vorhanden gewesen sein.
Der Anfangs-Wassermenge im Tank betrug demnach B0 = 8,169 m³.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Sekunden ist der Vorsprung von Radfahrer1 gegenüber Radfahrer2 am kleinsten?
- Bei Beobachtungsbeginn ist der Radfahrer1 ca. 38,9 Meter vor Radfahrer2. Bestimme den kleinsten Vorsprung von Radfahrer1 auf Radfahrer2 im abgebildeten Zeitraum.
- Wie viele Meter ist der Radfahrer1 in den ersten 4 Sekunden gefahren?
Man erkennt schnell, dass von 0 bis 1 die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers liegt, so dass hier der Vorsprung des 1. Radfahrers zunimmt.
Von 1 bis 7 liegt dann die Geschwindigkeit des 2. Radfahrers über der Geschwindigkeit des 1. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers abnimmt.
Von 7 bis 10 liegt dann wieder die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 1.1
Meter
von 1 bis 7: ca. -12 Meter
- Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 1 weniger Zuwachs abzulesen ist als die Abnahme zwischen 1 und 7, ist der Zeitpunkt mit dem geringsten Bestand wenn die Zuwachsrate wieder größer wird als die Abnahmerate, also bei t = 7 s.
- kleinster Bestand
Da der Vorsprung des 1. Radfahrers zwischen t = 0 und t = 7 erst 1.1 Meter zu- und dann wieder 12 Meter abgenommen hat, muss der geringste Bestand zum Zeitpunkt t =7 sein (bevor es danach wieder zunimmt). Für diesen minimalen Bestand gilt dann:
B7 = 38.9+1.1-12 = 28 Meter . - reiner Zuwachs nach 4 s
Da ja die blaue Kurve der Graph der Zunahme darstellt, müssen wir einfach die Fläche zwischen der blauen Kurve und der x-Achse im Intervall [0;4] ablesen. Diese ist ca. Z4 = 12.4 Meter .
