Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach 3s hat er bereits 16 m zurückgelegt. Wie weit ist er nach 6 Sekunden?
=
=
=
=
=
=
≈ 0,057
Integralanwendungen
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach s hat er bereits 9 m zurückgelegt. Wie weit ist er nach Sekunden?
=
=
=
=
=
=
=
=
=
≈ 130,667
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
= | | | ||
= | |||
= | |: | ||
= | |ln(⋅) | ||
= |
= | | | ||
= | |:() | ||
= |
Mittelwerte
Beispiel:
Die Temperatur an einem Wintertag kann näherungsweise durch die Funktion f mit f(x)= beschrieben werden. Bestimme die Durchschnittstemperatur zwischen und .
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
=
≈ -0,849
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)= schließt mit der x-Achse und der Geraden x=3 eine nach rechts offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
=
Für u → ∞ gilt: A(u) = → = ≈ 0.047
Für den Flächeninhalt (immer positiv) gilt also I = 0.047
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Wassermenge im Tank) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
= | | | ||
= | |: | ||
= | |ln(⋅) | ||
= |
= | | | ||
= | |:() | ||
= |
Wir wissen nun, dass zum Zeitpunkt t = 5 der Bestand (Wassermenge im Tank) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 7,183
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 7,183 m³
Wenn der maximale Bestand (Wassermenge im Tank) aber 50 m³ ist müssen ja zu Beginn bereits 50 m³ - 7,183 m³ ≈ 42,817 m³ vorhanden gewesen sein.
Der Anfangs-Wassermenge im Tank betrug demnach B0 = 42,817 m³.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Bei Beobachtungsbeginn ist der Radfahrer1 ca. 31,2 Meter vor Radfahrer2. Bestimme den kleinsten Vorsprung von Radfahrer1 auf Radfahrer2 im abgebildeten Zeitraum.
- Nach wie vielen Sekunden ist der Vorsprung von Radfahrer1 gegenüber Radfahrer2 am größten?
Man erkennt schnell, dass von 0 bis 1 die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers liegt, so dass hier der Vorsprung des 1. Radfahrers zunimmt.
Von 1 bis 9 liegt dann die Geschwindigkeit des 2. Radfahrers über der Geschwindigkeit des 1. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers abnimmt.
Von 9 bis 10 liegt dann wieder die Geschwindigkeit des 1. Radfahrers über der Geschwindigkeit des 2. Radfahrers, so dass hier der Vorsprung des 1. Radfahrers wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 0.5
Meter
von 1 bis 9: ca. -10.7 Meter
von 9 bis 10: ca. 0.5 Meter
- kleinster Bestand
Da der Vorsprung des 1. Radfahrers zwischen t = 0 und t = 9 erst 0.5 Meter zu- und dann wieder 10.7 Meter abgenommen hat, muss der geringste Bestand zum Zeitpunkt t =9 sein (bevor es danach wieder zunimmt). Für diesen minimalen Bestand gilt dann:
B9 = 31.2+0.5-10.7 = 21 Meter . - Zeitpunkt des größten Bestands
Nachdem der Vorsprung des 1. Radfahrers zwischen t = 0 und t = 1 zugenommen hat, ist die Abnahme zwischen t = 1 und t = 9 jedoch größer als der Zuwachs zwischen t = 9 und t = 10, so dass der Höchststand von t = 1 nicht wieder erreicht wird.
Somit wird der Vorsprung des 1. Radfahrers bei t = 1 s maximal.