Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach 2s hat er bereits 20 m zurückgelegt. Wie weit ist er nach 4 Sekunden?
=
=
=
=
=
=
=
=
≈ 0,066
Integralanwendungen
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach 4s hat er bereits 3 m zurückgelegt. Wie weit ist er nach 7 Sekunden?
=
=
=
=
=
=
=
=
= 0,2
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
| = | | | ||
| = | |||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |:() | ||
| = |
Mittelwerte
Beispiel:
Bestimme den Mittelwert der Funktionswerte von f mit f(x)= zwischen und .
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
≈ -0,212
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)= schließt mit der x-Achse und der Geraden x=4 eine nach rechts offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
=
Für u → ∞ gilt: A(u) = → = ≈ -0.013
Für den Flächeninhalt (immer positiv) gilt also I = 0.013
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Höhe des Fahrstuhls) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
Wir wissen, dass bei der Sinus-Funktion die fallende Nullstelle nach einer halben Periode ist.
Die Periode von f ist p =
=
10. Somit ist die fallende Nullstelle nach einer halben Periode bei t = 5.
Da beim Sinus die Teilflächen über und unter der x-Achse gleich groß sind, wird dieser maximale Bestand zwar noch zu anderen Zeitpunkten erreicht, aber nie übertroffen.
Wir wissen nun, dass zum Zeitpunkt t = 5 der Bestand (Höhe des Fahrstuhls) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 15,915
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 15,915 m
Wenn der maximale Bestand (Höhe des Fahrstuhls) aber 55 m ist müssen ja zu Beginn bereits 55 m - 15,915 m ≈ 39,085 m vorhanden gewesen sein.
Der Anfangs-Höhe des Fahrstuhls betrug demnach B0 = 39,085 m.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Minuten ist am wenigsten Wasser im Tank?
- 4 Minuten nach Beobachtungsbeginn sind ca. 15,1 Liter Wasser im Tank. Bestimme den Inhalt des Tanks in Litern Wasser bei Beobachtungsbeginn.
Man erkennt schnell, dass von 0 bis 1 die Zuflussrate über der Abflussrate liegt, so dass hier das Wasservolumen zunimmt.
Von 1 bis 7 liegt dann die Abflussrate über der Zuflussrate, so dass hier das Wasservolumen abnimmt.
Von 7 bis 10 liegt dann wieder die Zuflussrate über der Abflussrate, so dass hier das Wasservolumen wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 1.1
Liter
von 1 bis 7: ca. -12 Liter
- Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 1 weniger Zuwachs abzulesen ist als die Abnahme zwischen 1 und 7, ist der Zeitpunkt mit dem geringsten Bestand wenn die Zuwachsrate wieder größer wird als die Abnahmerate, also bei t = 7 min.
- Anfangsbestand
Die Änderung des Bestands kann man einfach durch die Flächen zwischen dem Kurven ablesen, wobei man hier natürlich die Vorzeichen übernehmen muss. Durch Abzählen der Kästchen der eingeschlossenen Flächen im Interval [0;4] kann man einen Zuwachs von ca. -4.9 erkennen.
Bei Beobachtungsbeginn muss somit das Wasservolumen um -4.9 Liter niedriger als die 15.1 nach 4 min gewesen sein:
B0 = 15.1 - -4.9 = 20 Liter .
