Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Bei einer Bakterienkultur geht man von einer Wachstumsrate von Bakterien pro Minute zur Zeit x (in Minuten) aus. Zu Zeitpunkt x=2 sind 28 Bakterien vorhanden. Wie viele sind es nach 3 Minuten?
=
=
=
≈ 0,632
Integralanwendungen
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach 4s hat er bereits 6 m zurückgelegt. Wie weit ist er nach 7 Sekunden?
=
=
=
=
=
≈ 2,773
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 1 so, dass
=
=
Diese Integralfunktion soll ja den Wert
|
|
= |
|
|
|
|
|
= | |
|
|
| u1 | = |
|
=
|
| u2 | = |
|
=
|
Da u=
Mittelwerte
Beispiel:
Die Menge eines Wirkstoffs im Blut eines Patienten kann zur Zeit x (in min) näherungsweise durch die Funktion f mit f(x)=
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
=
=
=
≈ 0,333
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)=
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
=
=
Für u → 2 (u>2, also von rechts) gilt: A(u) =
Für den Flächeninhalt (immer positiv) gilt also I = 4
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Höhe des Fahrstuhls) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
|
|
= | |
|
|
|
|
= | |ln(⋅) | |
|
|
= |
|
|
= | |
|
|
|
|
= |
|
|:( |
|
|
= |
|
Wir wissen nun, dass zum Zeitpunkt t = 2 der Bestand (Höhe des Fahrstuhls) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 1,437
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 1,437 m
Wenn der maximale Bestand (Höhe des Fahrstuhls) aber 45 m ist müssen ja zu Beginn bereits 45 m - 1,437 m ≈ 43,563 m vorhanden gewesen sein.
Der Anfangs-Höhe des Fahrstuhls betrug demnach B0 = 43,563 m.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Minuten ist am meisten Wasser im Tank?
- Bei Beobachtungsbeginn sind ca. 28,1 Liter Wasser im Tank. Bestimme den kleinstmöglichen Inhalt an Liter Wasser im abgebildeten Zeitraum.
Man erkennt schnell, dass von 0 bis 1 die Zuflussrate über der Abflussrate liegt, so dass hier das Wasservolumen zunimmt.
Von 1 bis 5 liegt dann die Abflussrate über der Zuflussrate, so dass hier das Wasservolumen abnimmt.
Von 5 bis 10 liegt dann wieder die Zuflussrate über der Abflussrate, so dass hier das Wasservolumen wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 1: ca. 1.2
Liter
von 1 bis 5: ca. -5.3 Liter
- Zeitpunkt des größten Bestands
Nachdem das Wasservolumen zwischen t = 0 und t = 1 zugenommen hat, ist die Abnahme zwischen t = 1 und t = 5 deutlich kleiner als der Zuwachs zwischen t = 5 und t = 10, so dass der Höchststand erst bei t = 10 erreicht wird.
Somit wird das Wasservolumen bei t = 10 min maximal. - kleinster Bestand
Da das Wasservolumen zwischen t = 0 und t = 5 erst 1.2 Liter zu- und dann wieder 5.3 Liter abgenommen hat, muss der geringste Bestand zum Zeitpunkt t =5 sein (bevor es danach wieder zunimmt). Für diesen minimalen Bestand gilt dann:
B5 = 28.1+1.2-5.3 = 24 Liter .
