Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach s hat er bereits 3 m zurückgelegt. Wie weit ist er nach Sekunden?
=
=
=
=
=
=
=
=
≈ 62,222
Integralanwendungen
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach s hat er bereits 2 m zurückgelegt. Wie weit ist er nach Sekunden?
=
=
=
=
=
=
=
=
=
≈ 12,333
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
| = | | | ||
| = | |||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |: | ||
| = |
Mittelwerte
Beispiel:
Die Menge an Wasser in einem Wassertank zur Zeit x (in min) kann näherungsweise durch die Funktion f mit f(x)= beschrieben werden. Wieviel Wasser sind während der ersten 2 Minuten durchschnittlich im Tank?
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
=
=
=
=
=
≈ 25,333
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)= schließt mit der x-Achse und der y-Achse eine nach rechts offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
Für u → ∞ gilt: A(u) = →
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Wassermenge im Tank) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
Wir wissen, dass bei der Sinus-Funktion die fallende Nullstelle nach einer halben Periode ist.
Die Periode von f ist p =
=
8. Somit ist die fallende Nullstelle nach einer halben Periode bei t = 4.
Da beim Sinus die Teilflächen über und unter der x-Achse gleich groß sind, wird dieser maximale Bestand zwar noch zu anderen Zeitpunkten erreicht, aber nie übertroffen.
Wir wissen nun, dass zum Zeitpunkt t = 4 der Bestand (Wassermenge im Tank) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
≈ 10,186
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 10,186 m³
Wenn der maximale Bestand (Wassermenge im Tank) aber 55 m³ ist müssen ja zu Beginn bereits 55 m³ - 10,186 m³ ≈ 44,814 m³ vorhanden gewesen sein.
Der Anfangs-Wassermenge im Tank betrug demnach B0 = 44,814 m³.
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Stunden sind die wenigsten Besucher auf dem Festival-Gelände?
- Bei Beobachtungsbeginn sind ca. 18,9 Hundert Personen auf dem Festival-Gelände Wasser im Tank. Bestimme die Besucherzahl auf dem Festival-Gelände 3 Stunden nach Beobachtungsbeginn.
- Wie viele Hundert Personen treten in den ersten 3 Stunden in das Festival-Gelände ein?
Man erkennt schnell, dass von 0 bis 4 die Eintrittsrate ins Festival-Gelände über der Austrittssrate aus dem Festival-Gelände liegt, so dass hier die Menge der Besucher auf dem Festival-Gelände zunimmt.
Von 4 bis 8 liegt dann die Austrittssrate aus dem Festival-Gelände über der Eintrittsrate ins Festival-Gelände, so dass hier die Menge der Besucher auf dem Festival-Gelände abnimmt.
Von 8 bis 10 liegt dann wieder die Eintrittsrate ins Festival-Gelände über der Austrittssrate aus dem Festival-Gelände, so dass hier die Menge der Besucher auf dem Festival-Gelände wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 4: ca. 5.3
Hundert Personen
von 4 bis 8: ca. -1.1 Hundert Personen
von 8 bis 10: ca. 1.1 Hundert Personen
- Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 4 mehr Zuwachs abzulesen ist als die Abnahme zwischen 4 und 8, ist der Zeitpunkt mit dem geringsten Bestand gleich zu Beginn, also bei t = 0 Stunden.
- Bestand nach 3 Stunden
Die Änderung des Bestands kann man einfach durch die Flächen zwischen dem Kurven ablesen, wobei man hier natürlich die Vorzeichen übernehmen muss. Durch Abzählen der Kästchen der eingeschlossenen Flächen im Interval [0;3] kann man einen Zuwachs von ca. 5.1 erkennen.
Für die Menge der Besucher auf dem Festival-Gelände nach 3 Stunden gilt somit B3 = 18.9 + 5.1 = 24 Hundert Personen . - reiner Zuwachs nach 3 Stunden
Da ja die blaue Kurve der Graph der Zunahme darstellt, müssen wir einfach die Fläche zwischen der blauen Kurve und der x-Achse im Intervall [0;3] ablesen. Diese ist ca. Z3 = 19.2 Hundert Personen .
