Aufgabenbeispiele von Änderungsrate -> Bestand
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 3 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I2 (von 3 bis 5):
Rechtecksfläche I2 = (5 - 3) ⋅
I3 (von 5 bis 8): Dreiecksfläche I3 = = = 7.5.
Für den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 3 und 8 gilt somit:
Iges = 10
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 10 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2): Dreiecksfläche I1 = = = 3.
I2 (von 2 bis 5): Dreiecksfläche I2 = = = -1.5.
I3 (von 5 bis 8):
Rechtecksfläche I3 = (8 - 5) ⋅
I4 (von 8 bis 10):
Trapezfläche I4 = (10 - 8) ⋅
= 2 ⋅
Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 10 gilt somit:
Iges = 3
Da zu Begin ja bereits 54 m³ vorhanden waren, sind es nun nach 10 min
I10 = 54 m³
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 5 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3): Dreiecksfläche I1 = = = 6.
I2 (von 3 bis 5): Dreiecksfläche I2 = = = -1.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 5 gilt somit:
Iges = 6
Da ja nach 5 s 64 cm vorhanden sind, und zwischen t=0 und t=5 insgesamt 5 cm dazu kam,
müssen es zu Beginn
Istart =
64 cm -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=4 nimmt der Bestand (Personen auf dem Festivalgelände) ausschließlich ab, und zwar um:
IAbnahme =
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 4): Dreiecksfläche I2 = = = -2.
Somit nimmt der Bestand bis t=4 um -4
Weil danach der Bestand wieder ständig zunimmt, ist zum Zeitpunkt t=4 der minimale Bestand (Personen auf dem Festivalgelände) erreicht mit:
Bmin = 30 Personen
Die anschließende Zunahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I3 (von 4 bis 7): Dreiecksfläche I3 = = = 4.5.
I4 (von 7 bis 10):
Rechtecksfläche I4 = (10 - 7) ⋅
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Personen auf dem Festivalgelände) von Bend = 24 Personen
Da dies mehr ist als zu Beginn der Beobachtung (30 Personen), ist dies der maximale Bestand(Personen auf dem Festivalgelände):
Bmax = 37.5 Personen
