Aufgabenbeispiele von Änderungsrate -> Bestand
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 4):
Trapezfläche I2 = (4 - 2) ⋅
= 2 ⋅
I3 (von 4 bis 7):
Rechtecksfläche I3 = (7 - 4) ⋅
I4 (von 7 bis 9):
Trapezfläche I4 = (9 - 7) ⋅
= 2 ⋅
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 9 gilt somit:
Iges = 4
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 5 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 5): Dreiecksfläche I2 = = = 4.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 5 gilt somit:
Iges = 12
Da zu Begin ja bereits 48 cm vorhanden waren, sind es nun nach 5 s
I5 = 48 cm
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 10 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 5): Dreiecksfläche I2 = = = 6.
I3 (von 5 bis 8): Dreiecksfläche I3 = = = -6.
I4 (von 8 bis 10):
Rechtecksfläche I4 = (10 - 8) ⋅
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 10 gilt somit:
Iges = 8
Da ja nach 10 s 86 cm vorhanden sind, und zwischen t=0 und t=10 insgesamt 0 cm dazu kam,
müssen es zu Beginn
Istart =
86 cm -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=3 nimmt der Bestand (Entfernung der Lok vom Bahnhof) ausschließlich ab, und zwar um:
IAbnahme =
I1 (von 0 bis 3): Dreiecksfläche I1 = = = -6.
Somit nimmt der Bestand bis t=3 um -6 ab.
Weil danach der Bestand wieder ständig zunimmt, ist zum Zeitpunkt t=3 der minimale Bestand (Entfernung der Lok vom Bahnhof) erreicht mit:
Bmin = 63 cm
Die anschließende Zunahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I2 (von 3 bis 5): Dreiecksfläche I2 = = = 4.
I3 (von 5 bis 7):
Rechtecksfläche I3 = (7 - 5) ⋅
I4 (von 7 bis 9):
Trapezfläche I4 = (9 - 7) ⋅
= 2 ⋅
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Entfernung der Lok vom Bahnhof) von Bend = 57 cm
Da dies mehr ist als zu Beginn der Beobachtung (63 cm), ist dies der maximale Bestand(Entfernung der Lok vom Bahnhof):
Bmax = 74 cm