Aufgabenbeispiele von Änderungsrate -> Bestand
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Trapezfläche I1 = (3 - 0) ⋅
= 3 ⋅
I2 (von 3 bis 6):
Rechtecksfläche I2 = (6 - 3) ⋅
I3 (von 6 bis 9):
Trapezfläche I3 = (9 - 6) ⋅
= 3 ⋅
Für den Zuwachs des Bestands zwischen 0 und 9 gilt somit:
Iges = 9
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 4): Dreiecksfläche I2 = = = -4.
I3 (von 4 bis 6): Dreiecksfläche I3 = = = 1.
I4 (von 6 bis 8):
Rechtecksfläche I4 = (8 - 6) ⋅
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 8 gilt somit:
Iges = -8
Da zu Begin ja bereits 40 cm vorhanden waren, sind es nun nach 8 s
I8 = 40 cm
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 7 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 4): Dreiecksfläche I2 = = = -2.
I3 (von 4 bis 7): Dreiecksfläche I3 = = = 6.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 7 gilt somit:
Iges = -4
Da ja nach 7 Sekunden 53 Liter vorhanden sind, und zwischen t=0 und t=7 insgesamt 0 Liter dazu kam,
müssen es zu Beginn
Istart =
53 Liter -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=5 nimmt der Bestand (Entfernung der Lok vom Bahnhof) ausschließlich ab, und zwar um:
IAbnahme =
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 5): Dreiecksfläche I2 = = = -2.
Somit nimmt der Bestand bis t=5 um -6
Weil danach der Bestand wieder ständig zunimmt, ist zum Zeitpunkt t=5 der minimale Bestand (Entfernung der Lok vom Bahnhof) erreicht mit:
Bmin = 53 cm
Die anschließende Zunahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I3 (von 5 bis 7): Dreiecksfläche I3 = = = 4.
I4 (von 7 bis 10):
Rechtecksfläche I4 = (10 - 7) ⋅
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Entfernung der Lok vom Bahnhof) von Bend = 45 cm
Da dies mehr ist als zu Beginn der Beobachtung (53 cm), ist dies der maximale Bestand(Entfernung der Lok vom Bahnhof):
Bmax = 61 cm