Aufgabenbeispiele von Änderungsrate -> Bestand
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 3 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I2 (von 3 bis 5):
Rechtecksfläche I2 = (5 - 3) ⋅
I3 (von 5 bis 7):
Trapezfläche I3 = (7 - 5) ⋅
= 2 ⋅
I4 (von 7 bis 9):
Rechtecksfläche I4 = (9 - 7) ⋅
Für den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 3 und 9 gilt somit:
Iges = 8
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 6 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 6): Dreiecksfläche I2 = = = 4.5.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 6 gilt somit:
Iges = 9
Da zu Begin ja bereits 39 cm vorhanden waren, sind es nun nach 6 s
I6 = 39 cm
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 7 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 5): Dreiecksfläche I2 = = = 6.
I3 (von 5 bis 7): Dreiecksfläche I3 = = = -1.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 7 gilt somit:
Iges = 8
Da ja nach 7 Sekunden 62 Liter vorhanden sind, und zwischen t=0 und t=7 insgesamt 13 Liter dazu kam,
müssen es zu Beginn
Istart =
62 Liter -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=3 nimmt der Bestand (Wasser im Wassertank) ausschließlich zu, und zwar um:
IZunahme =
I1 (von 0 bis 3): Dreiecksfläche I1 = = = 3.
Somit nimmt der Bestand bis t=3 um 3 zu.
Weil danach der Bestand wieder ständig abnimmt, ist zum Zeitpunkt t=3 der maximale Bestand (Wasser im Wassertank) erreicht mit:
Bmax = 60 m³
Die anschließende Abnahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I2 (von 3 bis 6): Dreiecksfläche I2 = = = -6.
I3 (von 6 bis 9):
Rechtecksfläche I3 = (9 - 6) ⋅
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Wasser im Wassertank) von Bend = 63 m³
Da dies weniger ist als zu Beginn der Beobachtung (60 m³), ist dies der minimale Bestand(Wasser im Wassertank):
Bmin = 45 m³
