Aufgabenbeispiele von Änderungsrate -> Bestand

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Integrale graphisch BF

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Im Schaubild sieht man den Graph der Geschwindigkeit einer Modelleisenbahn (f(t) in cm/s, t in Sekunden nach Beobachtungsbeginn). Wie weit (in cm) ist die Modelleisenbahn zwischen t=2 Sekunden und t=9 Sekunden gefahren?

Lösung einblenden

Den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 2 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).

Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:

I2 (von 2 bis 4): Rechtecksfläche I2 = (4 - 2) ⋅ 2 = 2 ⋅ 2 = 4.

I3 (von 4 bis 7): Trapezfläche I3 = (7 - 4) ⋅ 2 + 5 2 = 3 ⋅ 3.5 = 10.5.

I4 (von 7 bis 9): Rechtecksfläche I4 = (9 - 7) ⋅ 5 = 2 ⋅ 5 = 10.

Für den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 2 und 9 gilt somit:

Iges = 4 +10.5 +10 = 24.5

Integrale graphisch BF (mit Startwert)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Im Schaubild sieht man den Graph der Zu- bzw. Abflussrate von Wasser in einen Wassertank (f(t) in m³/min, t in Minuten nach Beobachtungsbeginn). Zu Beginn der Beobachtung (t=0) sind 37m³ Wasser im Tank. Wie viel Wasser ist nach 8 Minuten im Tank?

Lösung einblenden

Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).

Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:

I1 (von 0 bis 3): Rechtecksfläche I1 = (3 - 0) ⋅ ( - 4 ) = 3 ⋅ ( - 4 ) = -12.

I2 (von 3 bis 5): Dreiecksfläche I2 = (5 - 3) ⋅ ( - 4 ) 2 = -8 2 = -4.

I3 (von 5 bis 8): Dreiecksfläche I3 = (8 - 5) ⋅ 2 2 = 6 2 = 3.

Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 8 gilt somit:

Iges = -12 -4 +3 = -13

Da zu Begin ja bereits 37 m³ vorhanden waren, sind es nun nach 8 min
I8 = 37 m³ -13 m³ = 24 m³ .

Integrale graphisch BF (mit Endwert)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Bei einem Festival soll die Ankunftsrate durch die Funktion f näherungsweise beschrieben werden (f(t) in Personen/Sekunde, t in Sekunden nach Öffnung der Eingänge). Im Schaubild sieht man den Graph von f. Wie viele Personen wären nach diesem Modell bereits zum Zeitpunkt der Öffnung der Eingänge auf dem Festivalgelände gewesen, wenn nach 7 Sekunden 77 Personen anwesend sind?

Lösung einblenden

Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 7 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).

Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:

I1 (von 0 bis 2): Rechtecksfläche I1 = (2 - 0) ⋅ 4 = 2 ⋅ 4 = 8.

I2 (von 2 bis 4): Dreiecksfläche I2 = (4 - 2) ⋅ 4 2 = 8 2 = 4.

I3 (von 4 bis 7): keine Fläche in diesem Abschnitt, also I = 0.

Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 7 gilt somit:

Iges = 8 +4 +0 = 12

Da ja nach 7 s 77 Personen vorhanden sind, und zwischen t=0 und t=7 insgesamt 12 Personen dazu kam, müssen es zu Beginn
Istart = 77 Personen - 12 Personen = 65 Personen gewesen sein.

Min. und Maximum bei graph. Integral

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Im Schaubild sieht man den Graph der Geschwindigkeit einer Modelleisenbahn (f(t) in cm/s, t in Sekunden nach Beobachtungsbeginn). Negative Geschwindigkeiten bedeuten, dass die Lok rückwärts fährt. Bei Beobachtungsbeginn ist die Lok 29 cm vom Bahnhof entfernt. Bestimme die maximale und die minimale Entfernung der Lok vom Bahnhof im abgebildeten Zeitraum zwischen t=0 und t=7 Sekunden.

Lösung einblenden

Im ersten Teil zwischen t=0 und t=2 nimmt der Bestand (Entfernung der Lok vom Bahnhof) ausschließlich zu, und zwar um:

IZunahme =

I1 (von 0 bis 2): Dreiecksfläche I1 = (2 - 0) ⋅ 2 2 = 4 2 = 2.

Somit nimmt der Bestand bis t=2 um 2 zu.

Weil danach der Bestand wieder ständig abnimmt, ist zum Zeitpunkt t=2 der maximale Bestand (Entfernung der Lok vom Bahnhof) erreicht mit:
Bmax = 29 cm +2 cm = 31 cm.

Die anschließende Abnahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:

I2 (von 2 bis 4): Dreiecksfläche I2 = (4 - 2) ⋅ ( - 3 ) 2 = -6 2 = -3.

I3 (von 4 bis 7): Rechtecksfläche I3 = (7 - 4) ⋅ ( - 3 ) = 3 ⋅ ( - 3 ) = -9.

Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Entfernung der Lok vom Bahnhof) von Bend = 31 cm -12 cm = 19 cm.

Da dies weniger ist als zu Beginn der Beobachtung (29 cm), ist dies der minimale Bestand(Entfernung der Lok vom Bahnhof):
Bmin = 19 cm