Aufgabenbeispiele von Änderungsrate -> Bestand
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands zwischen 0 und 6 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Trapezfläche I1 = (2 - 0) ⋅
= 2 ⋅
I2 (von 2 bis 3):
Rechtecksfläche I2 = (3 - 2) ⋅
I3 (von 3 bis 6):
Trapezfläche I3 = (6 - 3) ⋅
= 3 ⋅
Für den Zuwachs des Bestands zwischen 0 und 6 gilt somit:
Iges = 9
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 4): Dreiecksfläche I2 = = = -4.
I3 (von 4 bis 7): Dreiecksfläche I3 = = = 3.
I4 (von 7 bis 9):
Rechtecksfläche I4 = (9 - 7) ⋅
Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 9 gilt somit:
Iges = -8
Da zu Begin ja bereits 40 m³ vorhanden waren, sind es nun nach 9 min
I9 = 40 m³
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 5): Dreiecksfläche I2 = = = -4.
I3 (von 5 bis 7): Dreiecksfläche I3 = = = 3.
I4 (von 7 bis 9):
Rechtecksfläche I4 = (9 - 7) ⋅
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 9 gilt somit:
Iges = -12
Da ja nach 9 s 54 cm vorhanden sind, und zwischen t=0 und t=9 insgesamt -7 cm dazu, also 7 cm weg kam,
müssen es zu Beginn
Istart =
54 cm -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=3 nimmt der Bestand (Entfernung der Lok vom Bahnhof) ausschließlich ab, und zwar um:
IAbnahme =
I1 (von 0 bis 3): Dreiecksfläche I1 = = = -6.
Somit nimmt der Bestand bis t=3 um -6 ab.
Weil danach der Bestand wieder ständig zunimmt, ist zum Zeitpunkt t=3 der minimale Bestand (Entfernung der Lok vom Bahnhof) erreicht mit:
Bmin = 45 cm
Die anschließende Zunahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I2 (von 3 bis 6): Dreiecksfläche I2 = = = 1.5.
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Entfernung der Lok vom Bahnhof) von Bend = 39 cm
Da dies nicht mehr ist als zu Beginn der Beobachtung (45 cm), ist der maximale Bestand (Entfernung der Lok vom Bahnhof) der Startwert:
Bmax = 45 cm
