Aufgabenbeispiele von Änderungsrate -> Bestand
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 0 und 10 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 6):
Trapezfläche I2 = (6 - 3) ⋅
= 3 ⋅
I3 (von 6 bis 7):
Rechtecksfläche I3 = (7 - 6) ⋅
I4 (von 7 bis 10):
Trapezfläche I4 = (10 - 7) ⋅
= 3 ⋅
Für den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 0 und 10 gilt somit:
Iges = 9
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 10 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2): Dreiecksfläche I1 = = = -3.
I2 (von 2 bis 5): Dreiecksfläche I2 = = = 6.
I3 (von 5 bis 7):
Rechtecksfläche I3 = (7 - 5) ⋅
I4 (von 7 bis 10):
Trapezfläche I4 = (10 - 7) ⋅
= 3 ⋅
Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 10 gilt somit:
Iges = -3
Da zu Begin ja bereits 65 m³ vorhanden waren, sind es nun nach 10 min
I10 = 65 m³
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 10 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2): Dreiecksfläche I1 = = = 3.
I2 (von 2 bis 4): Dreiecksfläche I2 = = = -4.
I3 (von 4 bis 6):
Rechtecksfläche I3 = (6 - 4) ⋅
I4 (von 6 bis 8):
Trapezfläche I4 = (8 - 6) ⋅
= 2 ⋅
I5 (von 8 bis 10):
Rechtecksfläche I5 = (10 - 8) ⋅
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 10 gilt somit:
Iges = 3
Da ja nach 10 s 71 cm vorhanden sind, und zwischen t=0 und t=10 insgesamt -16 cm dazu, also 16 cm weg kam,
müssen es zu Beginn
Istart =
71 cm -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=3 nimmt der Bestand (Personen auf dem Festivalgelände) ausschließlich zu, und zwar um:
IZunahme =
I1 (von 0 bis 3): Dreiecksfläche I1 = = = 6.
Somit nimmt der Bestand bis t=3 um 6 zu.
Weil danach der Bestand wieder ständig abnimmt, ist zum Zeitpunkt t=3 der maximale Bestand (Personen auf dem Festivalgelände) erreicht mit:
Bmax = 51 Personen
Die anschließende Abnahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I2 (von 3 bis 5): Dreiecksfläche I2 = = = -2.
I3 (von 5 bis 8):
Rechtecksfläche I3 = (8 - 5) ⋅
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Personen auf dem Festivalgelände) von Bend = 57 Personen
Da dies weniger ist als zu Beginn der Beobachtung (51 Personen), ist dies der minimale Bestand(Personen auf dem Festivalgelände):
Bmin = 49 Personen
