Aufgabenbeispiele von Pythagoras
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Hypothenuse bestimmen (mit Pyth.)
Beispiel:
Berechne die Länge der Hypotenuse.
Im vorliegenden rechtwinkligen Dreieck sind die beiden Katheten (also die beiden Seiten, die am rechten Winkel anliegen) gegeben.
Somit kann man ganz einfach den Satz des Pythagoras anwenden:
62 + 82 = b2
36 + 64 = b2
100 = b2 |
10 = b
Die gesuchte Länge ist somit b = 10 mm.
Pythagoras mit ganzen Zahlen
Beispiel:
Berechne die fehlende Länge im abgebildeten rechtwinkligen Dreieck.
Im vorliegenden rechtwinkligen Dreieck sind eine Kathete und die Hypotenuse (längste Seite gegenüber dem rechten Winkel) gegeben.
Somit kann man ganz einfach den Satz des Pythagoras anwenden:
112 + a2 = 612
121 + a2 = 3721 | - 121
a2 = 3600 |
a = 60
Pythagoras mit reelen Zahlen
Beispiel:
Berechne die fehlende Länge im abgebildeten rechtwinkligen Dreieck.
Im vorliegenden rechtwinkligen Dreieck sind die beiden Katheten (also die beiden Seiten, die am rechten Winkel anliegen) gegeben.
Somit kann man ganz einfach den Satz des Pythagoras anwenden:
642 + 632 = b2
4096 + 3969 = b2
8065 = b2 |
89.81 ≈ b
Pythagoras (ohne Skizze)
Beispiel:
In einem rechtwinkligen Dreieck sind die Längen der beiden Katheten mit a = 64 mm und b = 63 mm gegeben. Berechne die Länge der Hypotenuse.
Runde auf zwei Stellen nach dem Komma.
Im vorliegenden rechtwinkligen Dreieck sind die beiden Katheten (also die beiden Seiten, die am rechten Winkel anliegen) gegeben.
Somit kann man ganz einfach den Satz des Pythagoras anwenden:
642 + 632 = c2
4096 + 3969 = c2
8065 = c2 |
89.81 ≈ c
Quadrate über rechtwinkl. Dreieck
Beispiel:
Berechne den Flächeninhalt der roten Fläche A.
Nach dem Satz des Pythagoras gilt:
49 + A = 102
49 + A = 100 | - 49
A = 51
Der gesuchte Flächeninhalt ist somit A = 51 cm2.
Flächeninhalt eines rechtwinkl. Dreiecks
Beispiel:
Berechne den Flächeninhalt des abgebildeten rechtwinkligen Dreiecks.
Als erstes berechnen wir die Länge der anderen Kathete:
Im vorliegenden rechtwinkligen Dreieck sind eine Kathete und die Hypotenuse (längste Seite gegenüber dem rechten Winkel) gegeben.
Somit kann man ganz einfach den Satz des Pythagoras anwenden:
552 + b2 = 732
3025 + b2 = 5329 | - 3025
b2 = 2304 |
b = 48
Da im rechtwinkligen Dreieck ja immer die eine Kathete gleichzeitig die Höhe auf der andere Kathete ist, kann man den Flächeninhalt ganz einfach berechnen als:
A = ⋅ 48 m ⋅ 55 m
also A = 1320 m2
Pythagoras im Rechteck und Dreieck
Beispiel:
Berechne die fehlende Länge a im abgebildeten Dreieck.
Runde das Ergebnis auf zwei Nachkommastellen.
Im vorliegenden gleichschenkligen Dreieck teilt die Höhe das Dreieck in zwei kongruente Hälften. Bei diesen beiden Teildreiecken ist demnach also jeweils die untere waagrechte Seite 5 mm lang.
In einem dieser beiden rechtwinkligen Dreiecke können wir mit Hilfe des Satzes des Pythagoras die fehlende Strecke a berechnen.
52 + 62 = a2
25 + 36 = a2
61 = a2 |
a = ≈ 7.81
Die gesuchte Länge ist somit a ≈ 7.81 mm.
Pyth. im Rechteck und Dreieck (ohne Skizze)
Beispiel:
Ein gleichschenkliges Dreieck hat b=7 cm als Länge der Basis und a=12 cm als Länge der beiden Schenkel. Berechne die Höhe dieses Dreieck.
Runde das Ergebnis auf zwei Nachkommastellen.
Im vorliegenden gleichschenkligen Dreieck teilt die Höhe das Dreieck in zwei kongruente Hälften. Bei diesen beiden Teildreiecken ist demnach also jeweils die untere waagrechte Seite 3.5 cm lang.
In einem dieser beiden rechtwinkligen Dreiecke können wir mit Hilfe des Satzes des Pythagoras die fehlende Strecke h berechnen.
3.52 + h2 = 122
12.25 + h2 = 144 | - 12.25
h2 = 131.75 |
h = ≈ 11.48
Die gesuchte Länge ist somit h ≈ 11.48 cm.
Pythagoras rückwärts
Beispiel:
Gegeben ist ein gleichschenkliges Dreieck mit dem Flächeninhalt A=28 cm2 und der Länge der Basis b=8 cm. Berechne den Umfang dieses gleichschenkligen Dreieck.
Runde das Ergebnis auf zwei Nachkommastellen.
Für den Flächeninhalt im Dreieck gilt: A = ⋅ c ⋅ hc
In unserem Fall also:
28 = ⋅ 8 ⋅ h = 4 ⋅ h |:4
7 = h
Wenn wir jetzt nur das rechte Teildreieck anschauen, können wir mit dem Satz des Pythagoras die Länge der beiden gleichlangen Schenkel a berechnen:
a2 = 42 + 72
a2 = 16 + 49
a2 = 65|
a = ≈ 8.06
Somit gilt für den Umfang U ≈ 8.06 cm + 8.06 cm + 8 cm = 24.12 cm
Pythagoras rückwärts (schwer)
Beispiel:
Gegeben ist ein Rechteck mit der Diagonalenlänge d=87 cm und dem Umfang 246 cm.
Berechne den Flächeninhalt des Rechtecks.
Wenn wir die beiden Seitenlängen des Rechtecks a und b nennen, gilt für den Umfang:
I: U=2⋅a + 2⋅b
Außerdem können wir mit Hilfe des Satzes des Pythagoras die Länge der Diagonalen eines Rechtecks in Abhängigkeit von a und b ausdrücken. Dabei gilt:
II: a2 + b2 = d2
Konkret in dieser Aufgabe bedeutet das:
I: 246=2⋅a + 2⋅b | :2
II: a2 + b2 = 872
vereinfacht
I: 123=a + b
II: a2 + b2 = 7569
Wenn wir nun die erste Gleichung nach b auflösen erhalten wir
I: b = 123 - a
II: a2 + b2 = 7569
Jetzt setzen wir das b in Gleichung I in die Gleichung II ein:
II: a2 + (123 - a)2 = 7569
Durch Ausmultiplizieren mit der binomischen Formel erhalten wir:
= | |||
= | | |
= 0
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
a1,2 =
a1,2 =
a1,2 =
a1 =
= =
a2 =
Man kann erkennen, dass die Summe der beiden Lösungen gerade wieder den halben Umfang ergibt (vergleiche Gleichung I oben)
(I) 123 = 63 + 60
Das bedeutet, dass die beiden Lösungen gerade die beiden gesuchten Seitenlängen des Rechtecks sind.
Jetzt ist der Flächeninhalt des Rechtecks leicht zu berechnnen:
A = a ⋅ b = 63 cm ⋅ 60 cm = 3780 cm2
Abstand zweier Punkte
Beispiel:
Berechne den Abstand der beiden Punkte A(-2|4) und B(2|-5) im Koordinatensystem.
Runde das Ergebnis auf zwei Nachkommastellen.
Wie man in der Skizze rechts gut erkennen kann, lässt sich der Abstand zwischen zwei Punkten als Hypotenuse eines rechtwinkligen Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.
Dabei ist die Länge der waagrechten Kathete gerade die Differenz der x-Werte der beiden Punkte:
dx =
2 -
Und die Länge der senkrechten Kathete ist die Differenz der y-Werte der beiden Punkte:
dy =
4 -
Jetzt können wir den Satz des Pythagoras anwenden:
d2 = 42 + 92
d2 = 16 + 81
d2 = 97
d =
Für den Abstand der beiden Punkte gilt also: d ≈ 9.85
Anwendungen Pythagoras
Beispiel:
Ein 8m hoher Mast wird von der einen Seite mit einem 10m langen Seil und von der gegenüberliegenden Seite mit einem 15m langen Seil abgespannt. Wie weit sind die Verankerungen der Spannseile von einander entfernt?
Im ersten Dreieck gilt:
82 + k12 = 102
64 + k12 = 100 |-64
k12 = 36 |
k1 ≈ 6
Im zweiten Dreieck gilt:
82 + k22 = 152
64 + k22 = 225 |-64
k22 = 161 |
k2 ≈ 12.69
Beide Strecken zusammen ergeben somit:
d = k1 + k2 ≈ 18.69m