Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 31 mod 10.

Lösung einblenden

Das nächst kleinere Vielfache von 10 ist 30, weil ja 3 ⋅ 10 = 30 ist.

Also bleibt als Rest eben noch 31 - 30 = 1.

Somit gilt: 31 mod 10 ≡ 1.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 60 und 71 für die gilt n ≡ 47 mod 11.

Lösung einblenden

Das nächst kleinere Vielfache von 11 ist 44, weil ja 4 ⋅ 11 = 44 ist.

Also bleibt als Rest eben noch 47 - 44 = 3.

Somit gilt: 47 mod 11 ≡ 3.

Wir suchen also eine Zahl zwischen 60 und 71 für die gilt: n ≡ 3 mod 11.

Dazu suchen wir erstmal ein Vielfaches von 11 in der Nähe von 60, z.B. 66 = 6 ⋅ 11

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 11 , sondern ≡ 3 mod 11 sein, also addieren wir noch 3 auf die 66 und erhalten so 69.

Somit gilt: 69 ≡ 47 ≡ 3 mod 11.

Modulo addieren

Beispiel:

Berechne ohne WTR: (19996 - 15997) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(19996 - 15997) mod 4 ≡ (19996 mod 4 - 15997 mod 4) mod 4.

19996 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 19996 = 19000+996 = 4 ⋅ 4750 +996.

15997 mod 4 ≡ 1 mod 4 kann man relativ leicht bestimmen, weil ja 15997 = 15000+997 = 4 ⋅ 3750 +997.

Somit gilt:

(19996 - 15997) mod 4 ≡ (0 - 1) mod 4 ≡ -1 mod 4 ≡ 3 mod 4.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (45 ⋅ 91) mod 6.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(45 ⋅ 91) mod 6 ≡ (45 mod 6 ⋅ 91 mod 6) mod 6.

45 mod 6 ≡ 3 mod 6 kann man relativ leicht bestimmen, weil ja 45 = 42 + 3 = 7 ⋅ 6 + 3 ist.

91 mod 6 ≡ 1 mod 6 kann man relativ leicht bestimmen, weil ja 91 = 90 + 1 = 15 ⋅ 6 + 1 ist.

Somit gilt:

(45 ⋅ 91) mod 6 ≡ (3 ⋅ 1) mod 6 ≡ 3 mod 6.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
27 mod m = 36 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 27 aus, ob zufällig 27 mod m = 36 mod m gilt:

m=2: 27 mod 2 = 1 ≠ 0 = 36 mod 2

m=3: 27 mod 3 = 0 = 0 = 36 mod 3

m=4: 27 mod 4 = 3 ≠ 0 = 36 mod 4

m=5: 27 mod 5 = 2 ≠ 1 = 36 mod 5

m=6: 27 mod 6 = 3 ≠ 0 = 36 mod 6

m=7: 27 mod 7 = 6 ≠ 1 = 36 mod 7

m=8: 27 mod 8 = 3 ≠ 4 = 36 mod 8

m=9: 27 mod 9 = 0 = 0 = 36 mod 9

m=10: 27 mod 10 = 7 ≠ 6 = 36 mod 10

m=11: 27 mod 11 = 5 ≠ 3 = 36 mod 11

m=12: 27 mod 12 = 3 ≠ 0 = 36 mod 12

m=13: 27 mod 13 = 1 ≠ 10 = 36 mod 13

m=14: 27 mod 14 = 13 ≠ 8 = 36 mod 14

m=15: 27 mod 15 = 12 ≠ 6 = 36 mod 15

m=16: 27 mod 16 = 11 ≠ 4 = 36 mod 16

m=17: 27 mod 17 = 10 ≠ 2 = 36 mod 17

m=18: 27 mod 18 = 9 ≠ 0 = 36 mod 18

m=19: 27 mod 19 = 8 ≠ 17 = 36 mod 19

m=20: 27 mod 20 = 7 ≠ 16 = 36 mod 20

m=21: 27 mod 21 = 6 ≠ 15 = 36 mod 21

m=22: 27 mod 22 = 5 ≠ 14 = 36 mod 22

m=23: 27 mod 23 = 4 ≠ 13 = 36 mod 23

m=24: 27 mod 24 = 3 ≠ 12 = 36 mod 24

m=25: 27 mod 25 = 2 ≠ 11 = 36 mod 25

m=26: 27 mod 26 = 1 ≠ 10 = 36 mod 26

m=27: 27 mod 27 = 0 ≠ 9 = 36 mod 27

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (36 - 27) = 9 bestimmen:

die gesuchten Zahlen sind somit:

3; 9