Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 93 mod 4.

Lösung einblenden

Das nächst kleinere Vielfache von 4 ist 92, weil ja 23 ⋅ 4 = 92 ist.

Also bleibt als Rest eben noch 93 - 92 = 1.

Somit gilt: 93 mod 4 ≡ 1.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 50 und 61 für die gilt n ≡ 61 mod 11.

Lösung einblenden

Das nächst kleinere Vielfache von 11 ist 55, weil ja 5 ⋅ 11 = 55 ist.

Also bleibt als Rest eben noch 61 - 55 = 6.

Somit gilt: 61 mod 11 ≡ 6.

Wir suchen also eine Zahl zwischen 50 und 61 für die gilt: n ≡ 6 mod 11.

Dazu suchen wir erstmal ein Vielfaches von 11 in der Nähe von 50, z.B. 44 = 4 ⋅ 11

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 11 , sondern ≡ 6 mod 11 sein, also addieren wir noch 6 auf die 44 und erhalten so 50.

Somit gilt: 50 ≡ 61 ≡ 6 mod 11.

Modulo addieren

Beispiel:

Berechne ohne WTR: (600 + 1200) mod 3.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(600 + 1200) mod 3 ≡ (600 mod 3 + 1200 mod 3) mod 3.

600 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 600 = 600+0 = 3 ⋅ 200 +0.

1200 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 1200 = 1200+0 = 3 ⋅ 400 +0.

Somit gilt:

(600 + 1200) mod 3 ≡ (0 + 0) mod 3 ≡ 0 mod 3.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (24 ⋅ 22) mod 6.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(24 ⋅ 22) mod 6 ≡ (24 mod 6 ⋅ 22 mod 6) mod 6.

24 mod 6 ≡ 0 mod 6 kann man relativ leicht bestimmen, weil ja 24 = 24 + 0 = 4 ⋅ 6 + 0 ist.

22 mod 6 ≡ 4 mod 6 kann man relativ leicht bestimmen, weil ja 22 = 18 + 4 = 3 ⋅ 6 + 4 ist.

Somit gilt:

(24 ⋅ 22) mod 6 ≡ (0 ⋅ 4) mod 6 ≡ 0 mod 6.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
49 mod m = 67 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 49 aus, ob zufällig 49 mod m = 67 mod m gilt:

m=2: 49 mod 2 = 1 = 1 = 67 mod 2

m=3: 49 mod 3 = 1 = 1 = 67 mod 3

m=4: 49 mod 4 = 1 ≠ 3 = 67 mod 4

m=5: 49 mod 5 = 4 ≠ 2 = 67 mod 5

m=6: 49 mod 6 = 1 = 1 = 67 mod 6

m=7: 49 mod 7 = 0 ≠ 4 = 67 mod 7

m=8: 49 mod 8 = 1 ≠ 3 = 67 mod 8

m=9: 49 mod 9 = 4 = 4 = 67 mod 9

m=10: 49 mod 10 = 9 ≠ 7 = 67 mod 10

m=11: 49 mod 11 = 5 ≠ 1 = 67 mod 11

m=12: 49 mod 12 = 1 ≠ 7 = 67 mod 12

m=13: 49 mod 13 = 10 ≠ 2 = 67 mod 13

m=14: 49 mod 14 = 7 ≠ 11 = 67 mod 14

m=15: 49 mod 15 = 4 ≠ 7 = 67 mod 15

m=16: 49 mod 16 = 1 ≠ 3 = 67 mod 16

m=17: 49 mod 17 = 15 ≠ 16 = 67 mod 17

m=18: 49 mod 18 = 13 = 13 = 67 mod 18

m=19: 49 mod 19 = 11 ≠ 10 = 67 mod 19

m=20: 49 mod 20 = 9 ≠ 7 = 67 mod 20

m=21: 49 mod 21 = 7 ≠ 4 = 67 mod 21

m=22: 49 mod 22 = 5 ≠ 1 = 67 mod 22

m=23: 49 mod 23 = 3 ≠ 21 = 67 mod 23

m=24: 49 mod 24 = 1 ≠ 19 = 67 mod 24

m=25: 49 mod 25 = 24 ≠ 17 = 67 mod 25

m=26: 49 mod 26 = 23 ≠ 15 = 67 mod 26

m=27: 49 mod 27 = 22 ≠ 13 = 67 mod 27

m=28: 49 mod 28 = 21 ≠ 11 = 67 mod 28

m=29: 49 mod 29 = 20 ≠ 9 = 67 mod 29

m=30: 49 mod 30 = 19 ≠ 7 = 67 mod 30

m=31: 49 mod 31 = 18 ≠ 5 = 67 mod 31

m=32: 49 mod 32 = 17 ≠ 3 = 67 mod 32

m=33: 49 mod 33 = 16 ≠ 1 = 67 mod 33

m=34: 49 mod 34 = 15 ≠ 33 = 67 mod 34

m=35: 49 mod 35 = 14 ≠ 32 = 67 mod 35

m=36: 49 mod 36 = 13 ≠ 31 = 67 mod 36

m=37: 49 mod 37 = 12 ≠ 30 = 67 mod 37

m=38: 49 mod 38 = 11 ≠ 29 = 67 mod 38

m=39: 49 mod 39 = 10 ≠ 28 = 67 mod 39

m=40: 49 mod 40 = 9 ≠ 27 = 67 mod 40

m=41: 49 mod 41 = 8 ≠ 26 = 67 mod 41

m=42: 49 mod 42 = 7 ≠ 25 = 67 mod 42

m=43: 49 mod 43 = 6 ≠ 24 = 67 mod 43

m=44: 49 mod 44 = 5 ≠ 23 = 67 mod 44

m=45: 49 mod 45 = 4 ≠ 22 = 67 mod 45

m=46: 49 mod 46 = 3 ≠ 21 = 67 mod 46

m=47: 49 mod 47 = 2 ≠ 20 = 67 mod 47

m=48: 49 mod 48 = 1 ≠ 19 = 67 mod 48

m=49: 49 mod 49 = 0 ≠ 18 = 67 mod 49

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (67 - 49) = 18 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 6; 9; 18