Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 88 mod 4.
Das nächst kleinere Vielfache von 4 ist 88, weil ja 22 ⋅ 4 = 88 ist.
Also bleibt als Rest eben noch 88 - 88 = 0.
Somit gilt: 88 mod 4 ≡ 0.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 80 und 89 für die gilt n ≡ 32 mod 3.
Das nächst kleinere Vielfache von 3 ist 30, weil ja 10 ⋅ 3 = 30 ist.
Also bleibt als Rest eben noch 32 - 30 = 2.
Somit gilt: 32 mod 3 ≡ 2.
Wir suchen also eine Zahl zwischen 80 und 89 für die gilt: n ≡ 2 mod 3.
Dazu suchen wir erstmal ein Vielfaches von 3 in der Nähe von 80, z.B. 78 = 26 ⋅ 3
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 3 , sondern ≡ 2 mod 3 sein, also addieren wir noch 2 auf die 78 und erhalten so 80.
Somit gilt: 80 ≡ 32 ≡ 2 mod 3.
Modulo addieren
Beispiel:
Berechne ohne WTR: (2497 + 145) mod 5.
Um längere Rechnungen zu vermeiden, rechnen wir:
(2497 + 145) mod 5 ≡ (2497 mod 5 + 145 mod 5) mod 5.
2497 mod 5 ≡ 2 mod 5 kann man relativ leicht bestimmen, weil ja 2497
= 2400
145 mod 5 ≡ 0 mod 5 kann man relativ leicht bestimmen, weil ja 145
= 140
Somit gilt:
(2497 + 145) mod 5 ≡ (2 + 0) mod 5 ≡ 2 mod 5.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (90 ⋅ 65) mod 4.
Um längere Rechnungen zu vermeiden, rechnen wir:
(90 ⋅ 65) mod 4 ≡ (90 mod 4 ⋅ 65 mod 4) mod 4.
90 mod 4 ≡ 2 mod 4 kann man relativ leicht bestimmen, weil ja 90 = 88 + 2 = 22 ⋅ 4 + 2 ist.
65 mod 4 ≡ 1 mod 4 kann man relativ leicht bestimmen, weil ja 65 = 64 + 1 = 16 ⋅ 4 + 1 ist.
Somit gilt:
(90 ⋅ 65) mod 4 ≡ (2 ⋅ 1) mod 4 ≡ 2 mod 4.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
42 mod m = 54 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 42 aus, ob zufällig 42 mod m = 54 mod m gilt:
m=2: 42 mod 2 = 0 = 0 = 54 mod 2
m=3: 42 mod 3 = 0 = 0 = 54 mod 3
m=4: 42 mod 4 = 2 = 2 = 54 mod 4
m=5: 42 mod 5 = 2 ≠ 4 = 54 mod 5
m=6: 42 mod 6 = 0 = 0 = 54 mod 6
m=7: 42 mod 7 = 0 ≠ 5 = 54 mod 7
m=8: 42 mod 8 = 2 ≠ 6 = 54 mod 8
m=9: 42 mod 9 = 6 ≠ 0 = 54 mod 9
m=10: 42 mod 10 = 2 ≠ 4 = 54 mod 10
m=11: 42 mod 11 = 9 ≠ 10 = 54 mod 11
m=12: 42 mod 12 = 6 = 6 = 54 mod 12
m=13: 42 mod 13 = 3 ≠ 2 = 54 mod 13
m=14: 42 mod 14 = 0 ≠ 12 = 54 mod 14
m=15: 42 mod 15 = 12 ≠ 9 = 54 mod 15
m=16: 42 mod 16 = 10 ≠ 6 = 54 mod 16
m=17: 42 mod 17 = 8 ≠ 3 = 54 mod 17
m=18: 42 mod 18 = 6 ≠ 0 = 54 mod 18
m=19: 42 mod 19 = 4 ≠ 16 = 54 mod 19
m=20: 42 mod 20 = 2 ≠ 14 = 54 mod 20
m=21: 42 mod 21 = 0 ≠ 12 = 54 mod 21
m=22: 42 mod 22 = 20 ≠ 10 = 54 mod 22
m=23: 42 mod 23 = 19 ≠ 8 = 54 mod 23
m=24: 42 mod 24 = 18 ≠ 6 = 54 mod 24
m=25: 42 mod 25 = 17 ≠ 4 = 54 mod 25
m=26: 42 mod 26 = 16 ≠ 2 = 54 mod 26
m=27: 42 mod 27 = 15 ≠ 0 = 54 mod 27
m=28: 42 mod 28 = 14 ≠ 26 = 54 mod 28
m=29: 42 mod 29 = 13 ≠ 25 = 54 mod 29
m=30: 42 mod 30 = 12 ≠ 24 = 54 mod 30
m=31: 42 mod 31 = 11 ≠ 23 = 54 mod 31
m=32: 42 mod 32 = 10 ≠ 22 = 54 mod 32
m=33: 42 mod 33 = 9 ≠ 21 = 54 mod 33
m=34: 42 mod 34 = 8 ≠ 20 = 54 mod 34
m=35: 42 mod 35 = 7 ≠ 19 = 54 mod 35
m=36: 42 mod 36 = 6 ≠ 18 = 54 mod 36
m=37: 42 mod 37 = 5 ≠ 17 = 54 mod 37
m=38: 42 mod 38 = 4 ≠ 16 = 54 mod 38
m=39: 42 mod 39 = 3 ≠ 15 = 54 mod 39
m=40: 42 mod 40 = 2 ≠ 14 = 54 mod 40
m=41: 42 mod 41 = 1 ≠ 13 = 54 mod 41
m=42: 42 mod 42 = 0 ≠ 12 = 54 mod 42
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (54 - 42) = 12 bestimmen:
die gesuchten Zahlen sind somit:
2; 3; 4; 6; 12
