Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 94 mod 4.

Lösung einblenden

Das nächst kleinere Vielfache von 4 ist 92, weil ja 23 ⋅ 4 = 92 ist.

Also bleibt als Rest eben noch 94 - 92 = 2.

Somit gilt: 94 mod 4 ≡ 2.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 20 und 29 für die gilt n ≡ 78 mod 9.

Lösung einblenden

Das nächst kleinere Vielfache von 9 ist 72, weil ja 8 ⋅ 9 = 72 ist.

Also bleibt als Rest eben noch 78 - 72 = 6.

Somit gilt: 78 mod 9 ≡ 6.

Wir suchen also eine Zahl zwischen 20 und 29 für die gilt: n ≡ 6 mod 9.

Dazu suchen wir erstmal ein Vielfaches von 9 in der Nähe von 20, z.B. 18 = 2 ⋅ 9

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 9 , sondern ≡ 6 mod 9 sein, also addieren wir noch 6 auf die 18 und erhalten so 24.

Somit gilt: 24 ≡ 78 ≡ 6 mod 9.

Modulo addieren

Beispiel:

Berechne ohne WTR: (159 - 1996) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(159 - 1996) mod 4 ≡ (159 mod 4 - 1996 mod 4) mod 4.

159 mod 4 ≡ 3 mod 4 kann man relativ leicht bestimmen, weil ja 159 = 160-1 = 4 ⋅ 40 -1 = 4 ⋅ 40 - 4 + 3.

1996 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 1996 = 1900+96 = 4 ⋅ 475 +96.

Somit gilt:

(159 - 1996) mod 4 ≡ (3 - 0) mod 4 ≡ 3 mod 4.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (69 ⋅ 100) mod 8.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(69 ⋅ 100) mod 8 ≡ (69 mod 8 ⋅ 100 mod 8) mod 8.

69 mod 8 ≡ 5 mod 8 kann man relativ leicht bestimmen, weil ja 69 = 64 + 5 = 8 ⋅ 8 + 5 ist.

100 mod 8 ≡ 4 mod 8 kann man relativ leicht bestimmen, weil ja 100 = 96 + 4 = 12 ⋅ 8 + 4 ist.

Somit gilt:

(69 ⋅ 100) mod 8 ≡ (5 ⋅ 4) mod 8 ≡ 20 mod 8 ≡ 4 mod 8.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
15 mod m = 21 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 15 aus, ob zufällig 15 mod m = 21 mod m gilt:

m=2: 15 mod 2 = 1 = 1 = 21 mod 2

m=3: 15 mod 3 = 0 = 0 = 21 mod 3

m=4: 15 mod 4 = 3 ≠ 1 = 21 mod 4

m=5: 15 mod 5 = 0 ≠ 1 = 21 mod 5

m=6: 15 mod 6 = 3 = 3 = 21 mod 6

m=7: 15 mod 7 = 1 ≠ 0 = 21 mod 7

m=8: 15 mod 8 = 7 ≠ 5 = 21 mod 8

m=9: 15 mod 9 = 6 ≠ 3 = 21 mod 9

m=10: 15 mod 10 = 5 ≠ 1 = 21 mod 10

m=11: 15 mod 11 = 4 ≠ 10 = 21 mod 11

m=12: 15 mod 12 = 3 ≠ 9 = 21 mod 12

m=13: 15 mod 13 = 2 ≠ 8 = 21 mod 13

m=14: 15 mod 14 = 1 ≠ 7 = 21 mod 14

m=15: 15 mod 15 = 0 ≠ 6 = 21 mod 15

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (21 - 15) = 6 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 6