Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 45 mod 10.

Lösung einblenden

Das nächst kleinere Vielfache von 10 ist 40, weil ja 4 ⋅ 10 = 40 ist.

Also bleibt als Rest eben noch 45 - 40 = 5.

Somit gilt: 45 mod 10 ≡ 5.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 60 und 69 für die gilt n ≡ 82 mod 8.

Lösung einblenden

Das nächst kleinere Vielfache von 8 ist 80, weil ja 10 ⋅ 8 = 80 ist.

Also bleibt als Rest eben noch 82 - 80 = 2.

Somit gilt: 82 mod 8 ≡ 2.

Wir suchen also eine Zahl zwischen 60 und 69 für die gilt: n ≡ 2 mod 8.

Dazu suchen wir erstmal ein Vielfaches von 8 in der Nähe von 60, z.B. 64 = 8 ⋅ 8

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 8 , sondern ≡ 2 mod 8 sein, also addieren wir noch 2 auf die 64 und erhalten so 66.

Somit gilt: 66 ≡ 82 ≡ 2 mod 8.

Modulo addieren

Beispiel:

Berechne ohne WTR: (8001 - 159) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(8001 - 159) mod 4 ≡ (8001 mod 4 - 159 mod 4) mod 4.

8001 mod 4 ≡ 1 mod 4 kann man relativ leicht bestimmen, weil ja 8001 = 8000+1 = 4 ⋅ 2000 +1.

159 mod 4 ≡ 3 mod 4 kann man relativ leicht bestimmen, weil ja 159 = 160-1 = 4 ⋅ 40 -1 = 4 ⋅ 40 - 4 + 3.

Somit gilt:

(8001 - 159) mod 4 ≡ (1 - 3) mod 4 ≡ -2 mod 4 ≡ 2 mod 4.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (46 ⋅ 80) mod 5.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(46 ⋅ 80) mod 5 ≡ (46 mod 5 ⋅ 80 mod 5) mod 5.

46 mod 5 ≡ 1 mod 5 kann man relativ leicht bestimmen, weil ja 46 = 45 + 1 = 9 ⋅ 5 + 1 ist.

80 mod 5 ≡ 0 mod 5 kann man relativ leicht bestimmen, weil ja 80 = 80 + 0 = 16 ⋅ 5 + 0 ist.

Somit gilt:

(46 ⋅ 80) mod 5 ≡ (1 ⋅ 0) mod 5 ≡ 0 mod 5.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
15 mod m = 21 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 15 aus, ob zufällig 15 mod m = 21 mod m gilt:

m=2: 15 mod 2 = 1 = 1 = 21 mod 2

m=3: 15 mod 3 = 0 = 0 = 21 mod 3

m=4: 15 mod 4 = 3 ≠ 1 = 21 mod 4

m=5: 15 mod 5 = 0 ≠ 1 = 21 mod 5

m=6: 15 mod 6 = 3 = 3 = 21 mod 6

m=7: 15 mod 7 = 1 ≠ 0 = 21 mod 7

m=8: 15 mod 8 = 7 ≠ 5 = 21 mod 8

m=9: 15 mod 9 = 6 ≠ 3 = 21 mod 9

m=10: 15 mod 10 = 5 ≠ 1 = 21 mod 10

m=11: 15 mod 11 = 4 ≠ 10 = 21 mod 11

m=12: 15 mod 12 = 3 ≠ 9 = 21 mod 12

m=13: 15 mod 13 = 2 ≠ 8 = 21 mod 13

m=14: 15 mod 14 = 1 ≠ 7 = 21 mod 14

m=15: 15 mod 15 = 0 ≠ 6 = 21 mod 15

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (21 - 15) = 6 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 6