Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 54 mod 7.

Lösung einblenden

Das nächst kleinere Vielfache von 7 ist 49, weil ja 7 ⋅ 7 = 49 ist.

Also bleibt als Rest eben noch 54 - 49 = 5.

Somit gilt: 54 mod 7 ≡ 5.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 70 und 80 für die gilt n ≡ 81 mod 10.

Lösung einblenden

Das nächst kleinere Vielfache von 10 ist 80, weil ja 8 ⋅ 10 = 80 ist.

Also bleibt als Rest eben noch 81 - 80 = 1.

Somit gilt: 81 mod 10 ≡ 1.

Wir suchen also eine Zahl zwischen 70 und 80 für die gilt: n ≡ 1 mod 10.

Dazu suchen wir erstmal ein Vielfaches von 10 in der Nähe von 70, z.B. 70 = 7 ⋅ 10

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 10 , sondern ≡ 1 mod 10 sein, also addieren wir noch 1 auf die 70 und erhalten so 71.

Somit gilt: 71 ≡ 81 ≡ 1 mod 10.

Modulo addieren

Beispiel:

Berechne ohne WTR: (15002 + 1997) mod 5.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(15002 + 1997) mod 5 ≡ (15002 mod 5 + 1997 mod 5) mod 5.

15002 mod 5 ≡ 2 mod 5 kann man relativ leicht bestimmen, weil ja 15002 = 15000+2 = 5 ⋅ 3000 +2.

1997 mod 5 ≡ 2 mod 5 kann man relativ leicht bestimmen, weil ja 1997 = 1900+97 = 5 ⋅ 380 +97.

Somit gilt:

(15002 + 1997) mod 5 ≡ (2 + 2) mod 5 ≡ 4 mod 5.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (87 ⋅ 21) mod 3.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(87 ⋅ 21) mod 3 ≡ (87 mod 3 ⋅ 21 mod 3) mod 3.

87 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 87 = 87 + 0 = 29 ⋅ 3 + 0 ist.

21 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 21 = 21 + 0 = 7 ⋅ 3 + 0 ist.

Somit gilt:

(87 ⋅ 21) mod 3 ≡ (0 ⋅ 0) mod 3 ≡ 0 mod 3.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
21 mod m = 27 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 21 aus, ob zufällig 21 mod m = 27 mod m gilt:

m=2: 21 mod 2 = 1 = 1 = 27 mod 2

m=3: 21 mod 3 = 0 = 0 = 27 mod 3

m=4: 21 mod 4 = 1 ≠ 3 = 27 mod 4

m=5: 21 mod 5 = 1 ≠ 2 = 27 mod 5

m=6: 21 mod 6 = 3 = 3 = 27 mod 6

m=7: 21 mod 7 = 0 ≠ 6 = 27 mod 7

m=8: 21 mod 8 = 5 ≠ 3 = 27 mod 8

m=9: 21 mod 9 = 3 ≠ 0 = 27 mod 9

m=10: 21 mod 10 = 1 ≠ 7 = 27 mod 10

m=11: 21 mod 11 = 10 ≠ 5 = 27 mod 11

m=12: 21 mod 12 = 9 ≠ 3 = 27 mod 12

m=13: 21 mod 13 = 8 ≠ 1 = 27 mod 13

m=14: 21 mod 14 = 7 ≠ 13 = 27 mod 14

m=15: 21 mod 15 = 6 ≠ 12 = 27 mod 15

m=16: 21 mod 16 = 5 ≠ 11 = 27 mod 16

m=17: 21 mod 17 = 4 ≠ 10 = 27 mod 17

m=18: 21 mod 18 = 3 ≠ 9 = 27 mod 18

m=19: 21 mod 19 = 2 ≠ 8 = 27 mod 19

m=20: 21 mod 20 = 1 ≠ 7 = 27 mod 20

m=21: 21 mod 21 = 0 ≠ 6 = 27 mod 21

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (27 - 21) = 6 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 6