Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 55 mod 9.
Das nächst kleinere Vielfache von 9 ist 54, weil ja 6 ⋅ 9 = 54 ist.
Also bleibt als Rest eben noch 55 - 54 = 1.
Somit gilt: 55 mod 9 ≡ 1.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 50 und 59 für die gilt n ≡ 71 mod 8.
Das nächst kleinere Vielfache von 8 ist 64, weil ja 8 ⋅ 8 = 64 ist.
Also bleibt als Rest eben noch 71 - 64 = 7.
Somit gilt: 71 mod 8 ≡ 7.
Wir suchen also eine Zahl zwischen 50 und 59 für die gilt: n ≡ 7 mod 8.
Dazu suchen wir erstmal ein Vielfaches von 8 in der Nähe von 50, z.B. 48 = 6 ⋅ 8
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 8 , sondern ≡ 7 mod 8 sein, also addieren wir noch 7 auf die 48 und erhalten so 55.
Somit gilt: 55 ≡ 71 ≡ 7 mod 8.
Modulo addieren
Beispiel:
Berechne ohne WTR: (357 + 14004) mod 7.
Um längere Rechnungen zu vermeiden, rechnen wir:
(357 + 14004) mod 7 ≡ (357 mod 7 + 14004 mod 7) mod 7.
357 mod 7 ≡ 0 mod 7 kann man relativ leicht bestimmen, weil ja 357
= 350
14004 mod 7 ≡ 4 mod 7 kann man relativ leicht bestimmen, weil ja 14004
= 14000
Somit gilt:
(357 + 14004) mod 7 ≡ (0 + 4) mod 7 ≡ 4 mod 7.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (24 ⋅ 72) mod 8.
Um längere Rechnungen zu vermeiden, rechnen wir:
(24 ⋅ 72) mod 8 ≡ (24 mod 8 ⋅ 72 mod 8) mod 8.
24 mod 8 ≡ 0 mod 8 kann man relativ leicht bestimmen, weil ja 24 = 24 + 0 = 3 ⋅ 8 + 0 ist.
72 mod 8 ≡ 0 mod 8 kann man relativ leicht bestimmen, weil ja 72 = 72 + 0 = 9 ⋅ 8 + 0 ist.
Somit gilt:
(24 ⋅ 72) mod 8 ≡ (0 ⋅ 0) mod 8 ≡ 0 mod 8.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
22 mod m = 28 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 22 aus, ob zufällig 22 mod m = 28 mod m gilt:
m=2: 22 mod 2 = 0 = 0 = 28 mod 2
m=3: 22 mod 3 = 1 = 1 = 28 mod 3
m=4: 22 mod 4 = 2 ≠ 0 = 28 mod 4
m=5: 22 mod 5 = 2 ≠ 3 = 28 mod 5
m=6: 22 mod 6 = 4 = 4 = 28 mod 6
m=7: 22 mod 7 = 1 ≠ 0 = 28 mod 7
m=8: 22 mod 8 = 6 ≠ 4 = 28 mod 8
m=9: 22 mod 9 = 4 ≠ 1 = 28 mod 9
m=10: 22 mod 10 = 2 ≠ 8 = 28 mod 10
m=11: 22 mod 11 = 0 ≠ 6 = 28 mod 11
m=12: 22 mod 12 = 10 ≠ 4 = 28 mod 12
m=13: 22 mod 13 = 9 ≠ 2 = 28 mod 13
m=14: 22 mod 14 = 8 ≠ 0 = 28 mod 14
m=15: 22 mod 15 = 7 ≠ 13 = 28 mod 15
m=16: 22 mod 16 = 6 ≠ 12 = 28 mod 16
m=17: 22 mod 17 = 5 ≠ 11 = 28 mod 17
m=18: 22 mod 18 = 4 ≠ 10 = 28 mod 18
m=19: 22 mod 19 = 3 ≠ 9 = 28 mod 19
m=20: 22 mod 20 = 2 ≠ 8 = 28 mod 20
m=21: 22 mod 21 = 1 ≠ 7 = 28 mod 21
m=22: 22 mod 22 = 0 ≠ 6 = 28 mod 22
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (28 - 22) = 6 bestimmen:
die gesuchten Zahlen sind somit:
2; 3; 6