Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 68 mod 3.

Lösung einblenden

Das nächst kleinere Vielfache von 3 ist 66, weil ja 22 ⋅ 3 = 66 ist.

Also bleibt als Rest eben noch 68 - 66 = 2.

Somit gilt: 68 mod 3 ≡ 2.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 70 und 79 für die gilt n ≡ 49 mod 6.

Lösung einblenden

Das nächst kleinere Vielfache von 6 ist 48, weil ja 8 ⋅ 6 = 48 ist.

Also bleibt als Rest eben noch 49 - 48 = 1.

Somit gilt: 49 mod 6 ≡ 1.

Wir suchen also eine Zahl zwischen 70 und 79 für die gilt: n ≡ 1 mod 6.

Dazu suchen wir erstmal ein Vielfaches von 6 in der Nähe von 70, z.B. 72 = 12 ⋅ 6

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 6 , sondern ≡ 1 mod 6 sein, also addieren wir noch 1 auf die 72 und erhalten so 73.

Somit gilt: 73 ≡ 49 ≡ 1 mod 6.

Modulo addieren

Beispiel:

Berechne ohne WTR: (78 - 3997) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(78 - 3997) mod 4 ≡ (78 mod 4 - 3997 mod 4) mod 4.

78 mod 4 ≡ 2 mod 4 kann man relativ leicht bestimmen, weil ja 78 = 80-2 = 4 ⋅ 20 -2 = 4 ⋅ 20 - 4 + 2.

3997 mod 4 ≡ 1 mod 4 kann man relativ leicht bestimmen, weil ja 3997 = 3000+997 = 4 ⋅ 750 +997.

Somit gilt:

(78 - 3997) mod 4 ≡ (2 - 1) mod 4 ≡ 1 mod 4.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (53 ⋅ 85) mod 3.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(53 ⋅ 85) mod 3 ≡ (53 mod 3 ⋅ 85 mod 3) mod 3.

53 mod 3 ≡ 2 mod 3 kann man relativ leicht bestimmen, weil ja 53 = 51 + 2 = 17 ⋅ 3 + 2 ist.

85 mod 3 ≡ 1 mod 3 kann man relativ leicht bestimmen, weil ja 85 = 84 + 1 = 28 ⋅ 3 + 1 ist.

Somit gilt:

(53 ⋅ 85) mod 3 ≡ (2 ⋅ 1) mod 3 ≡ 2 mod 3.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
70 mod m = 90 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 70 aus, ob zufällig 70 mod m = 90 mod m gilt:

m=2: 70 mod 2 = 0 = 0 = 90 mod 2

m=3: 70 mod 3 = 1 ≠ 0 = 90 mod 3

m=4: 70 mod 4 = 2 = 2 = 90 mod 4

m=5: 70 mod 5 = 0 = 0 = 90 mod 5

m=6: 70 mod 6 = 4 ≠ 0 = 90 mod 6

m=7: 70 mod 7 = 0 ≠ 6 = 90 mod 7

m=8: 70 mod 8 = 6 ≠ 2 = 90 mod 8

m=9: 70 mod 9 = 7 ≠ 0 = 90 mod 9

m=10: 70 mod 10 = 0 = 0 = 90 mod 10

m=11: 70 mod 11 = 4 ≠ 2 = 90 mod 11

m=12: 70 mod 12 = 10 ≠ 6 = 90 mod 12

m=13: 70 mod 13 = 5 ≠ 12 = 90 mod 13

m=14: 70 mod 14 = 0 ≠ 6 = 90 mod 14

m=15: 70 mod 15 = 10 ≠ 0 = 90 mod 15

m=16: 70 mod 16 = 6 ≠ 10 = 90 mod 16

m=17: 70 mod 17 = 2 ≠ 5 = 90 mod 17

m=18: 70 mod 18 = 16 ≠ 0 = 90 mod 18

m=19: 70 mod 19 = 13 ≠ 14 = 90 mod 19

m=20: 70 mod 20 = 10 = 10 = 90 mod 20

m=21: 70 mod 21 = 7 ≠ 6 = 90 mod 21

m=22: 70 mod 22 = 4 ≠ 2 = 90 mod 22

m=23: 70 mod 23 = 1 ≠ 21 = 90 mod 23

m=24: 70 mod 24 = 22 ≠ 18 = 90 mod 24

m=25: 70 mod 25 = 20 ≠ 15 = 90 mod 25

m=26: 70 mod 26 = 18 ≠ 12 = 90 mod 26

m=27: 70 mod 27 = 16 ≠ 9 = 90 mod 27

m=28: 70 mod 28 = 14 ≠ 6 = 90 mod 28

m=29: 70 mod 29 = 12 ≠ 3 = 90 mod 29

m=30: 70 mod 30 = 10 ≠ 0 = 90 mod 30

m=31: 70 mod 31 = 8 ≠ 28 = 90 mod 31

m=32: 70 mod 32 = 6 ≠ 26 = 90 mod 32

m=33: 70 mod 33 = 4 ≠ 24 = 90 mod 33

m=34: 70 mod 34 = 2 ≠ 22 = 90 mod 34

m=35: 70 mod 35 = 0 ≠ 20 = 90 mod 35

m=36: 70 mod 36 = 34 ≠ 18 = 90 mod 36

m=37: 70 mod 37 = 33 ≠ 16 = 90 mod 37

m=38: 70 mod 38 = 32 ≠ 14 = 90 mod 38

m=39: 70 mod 39 = 31 ≠ 12 = 90 mod 39

m=40: 70 mod 40 = 30 ≠ 10 = 90 mod 40

m=41: 70 mod 41 = 29 ≠ 8 = 90 mod 41

m=42: 70 mod 42 = 28 ≠ 6 = 90 mod 42

m=43: 70 mod 43 = 27 ≠ 4 = 90 mod 43

m=44: 70 mod 44 = 26 ≠ 2 = 90 mod 44

m=45: 70 mod 45 = 25 ≠ 0 = 90 mod 45

m=46: 70 mod 46 = 24 ≠ 44 = 90 mod 46

m=47: 70 mod 47 = 23 ≠ 43 = 90 mod 47

m=48: 70 mod 48 = 22 ≠ 42 = 90 mod 48

m=49: 70 mod 49 = 21 ≠ 41 = 90 mod 49

m=50: 70 mod 50 = 20 ≠ 40 = 90 mod 50

m=51: 70 mod 51 = 19 ≠ 39 = 90 mod 51

m=52: 70 mod 52 = 18 ≠ 38 = 90 mod 52

m=53: 70 mod 53 = 17 ≠ 37 = 90 mod 53

m=54: 70 mod 54 = 16 ≠ 36 = 90 mod 54

m=55: 70 mod 55 = 15 ≠ 35 = 90 mod 55

m=56: 70 mod 56 = 14 ≠ 34 = 90 mod 56

m=57: 70 mod 57 = 13 ≠ 33 = 90 mod 57

m=58: 70 mod 58 = 12 ≠ 32 = 90 mod 58

m=59: 70 mod 59 = 11 ≠ 31 = 90 mod 59

m=60: 70 mod 60 = 10 ≠ 30 = 90 mod 60

m=61: 70 mod 61 = 9 ≠ 29 = 90 mod 61

m=62: 70 mod 62 = 8 ≠ 28 = 90 mod 62

m=63: 70 mod 63 = 7 ≠ 27 = 90 mod 63

m=64: 70 mod 64 = 6 ≠ 26 = 90 mod 64

m=65: 70 mod 65 = 5 ≠ 25 = 90 mod 65

m=66: 70 mod 66 = 4 ≠ 24 = 90 mod 66

m=67: 70 mod 67 = 3 ≠ 23 = 90 mod 67

m=68: 70 mod 68 = 2 ≠ 22 = 90 mod 68

m=69: 70 mod 69 = 1 ≠ 21 = 90 mod 69

m=70: 70 mod 70 = 0 ≠ 20 = 90 mod 70

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (90 - 70) = 20 bestimmen:

die gesuchten Zahlen sind somit:

2; 4; 5; 10; 20