Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 45 mod 10.
Das nächst kleinere Vielfache von 10 ist 40, weil ja 4 ⋅ 10 = 40 ist.
Also bleibt als Rest eben noch 45 - 40 = 5.
Somit gilt: 45 mod 10 ≡ 5.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 60 und 69 für die gilt n ≡ 82 mod 8.
Das nächst kleinere Vielfache von 8 ist 80, weil ja 10 ⋅ 8 = 80 ist.
Also bleibt als Rest eben noch 82 - 80 = 2.
Somit gilt: 82 mod 8 ≡ 2.
Wir suchen also eine Zahl zwischen 60 und 69 für die gilt: n ≡ 2 mod 8.
Dazu suchen wir erstmal ein Vielfaches von 8 in der Nähe von 60, z.B. 64 = 8 ⋅ 8
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 8 , sondern ≡ 2 mod 8 sein, also addieren wir noch 2 auf die 64 und erhalten so 66.
Somit gilt: 66 ≡ 82 ≡ 2 mod 8.
Modulo addieren
Beispiel:
Berechne ohne WTR: (8001 - 159) mod 4.
Um längere Rechnungen zu vermeiden, rechnen wir:
(8001 - 159) mod 4 ≡ (8001 mod 4 - 159 mod 4) mod 4.
8001 mod 4 ≡ 1 mod 4 kann man relativ leicht bestimmen, weil ja 8001
= 8000
159 mod 4 ≡ 3 mod 4 kann man relativ leicht bestimmen, weil ja 159
= 160
Somit gilt:
(8001 - 159) mod 4 ≡ (1 - 3) mod 4 ≡ -2 mod 4 ≡ 2 mod 4.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (46 ⋅ 80) mod 5.
Um längere Rechnungen zu vermeiden, rechnen wir:
(46 ⋅ 80) mod 5 ≡ (46 mod 5 ⋅ 80 mod 5) mod 5.
46 mod 5 ≡ 1 mod 5 kann man relativ leicht bestimmen, weil ja 46 = 45 + 1 = 9 ⋅ 5 + 1 ist.
80 mod 5 ≡ 0 mod 5 kann man relativ leicht bestimmen, weil ja 80 = 80 + 0 = 16 ⋅ 5 + 0 ist.
Somit gilt:
(46 ⋅ 80) mod 5 ≡ (1 ⋅ 0) mod 5 ≡ 0 mod 5.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
15 mod m = 21 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 15 aus, ob zufällig 15 mod m = 21 mod m gilt:
m=2: 15 mod 2 = 1 = 1 = 21 mod 2
m=3: 15 mod 3 = 0 = 0 = 21 mod 3
m=4: 15 mod 4 = 3 ≠ 1 = 21 mod 4
m=5: 15 mod 5 = 0 ≠ 1 = 21 mod 5
m=6: 15 mod 6 = 3 = 3 = 21 mod 6
m=7: 15 mod 7 = 1 ≠ 0 = 21 mod 7
m=8: 15 mod 8 = 7 ≠ 5 = 21 mod 8
m=9: 15 mod 9 = 6 ≠ 3 = 21 mod 9
m=10: 15 mod 10 = 5 ≠ 1 = 21 mod 10
m=11: 15 mod 11 = 4 ≠ 10 = 21 mod 11
m=12: 15 mod 12 = 3 ≠ 9 = 21 mod 12
m=13: 15 mod 13 = 2 ≠ 8 = 21 mod 13
m=14: 15 mod 14 = 1 ≠ 7 = 21 mod 14
m=15: 15 mod 15 = 0 ≠ 6 = 21 mod 15
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (21 - 15) = 6 bestimmen:
die gesuchten Zahlen sind somit:
2; 3; 6
