Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 73 mod 5.
Das nächst kleinere Vielfache von 5 ist 70, weil ja 14 ⋅ 5 = 70 ist.
Also bleibt als Rest eben noch 73 - 70 = 3.
Somit gilt: 73 mod 5 ≡ 3.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 90 und 99 für die gilt n ≡ 88 mod 7.
Das nächst kleinere Vielfache von 7 ist 84, weil ja 12 ⋅ 7 = 84 ist.
Also bleibt als Rest eben noch 88 - 84 = 4.
Somit gilt: 88 mod 7 ≡ 4.
Wir suchen also eine Zahl zwischen 90 und 99 für die gilt: n ≡ 4 mod 7.
Dazu suchen wir erstmal ein Vielfaches von 7 in der Nähe von 90, z.B. 91 = 13 ⋅ 7
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 7 , sondern ≡ 4 mod 7 sein, also addieren wir noch 4 auf die 91 und erhalten so 95.
Somit gilt: 95 ≡ 88 ≡ 4 mod 7.
Modulo addieren
Beispiel:
Berechne ohne WTR: (82 + 12004) mod 4.
Um längere Rechnungen zu vermeiden, rechnen wir:
(82 + 12004) mod 4 ≡ (82 mod 4 + 12004 mod 4) mod 4.
82 mod 4 ≡ 2 mod 4 kann man relativ leicht bestimmen, weil ja 82
= 80
12004 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 12004
= 12000
Somit gilt:
(82 + 12004) mod 4 ≡ (2 + 0) mod 4 ≡ 2 mod 4.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (36 ⋅ 27) mod 6.
Um längere Rechnungen zu vermeiden, rechnen wir:
(36 ⋅ 27) mod 6 ≡ (36 mod 6 ⋅ 27 mod 6) mod 6.
36 mod 6 ≡ 0 mod 6 kann man relativ leicht bestimmen, weil ja 36 = 36 + 0 = 6 ⋅ 6 + 0 ist.
27 mod 6 ≡ 3 mod 6 kann man relativ leicht bestimmen, weil ja 27 = 24 + 3 = 4 ⋅ 6 + 3 ist.
Somit gilt:
(36 ⋅ 27) mod 6 ≡ (0 ⋅ 3) mod 6 ≡ 0 mod 6.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
12 mod m = 16 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 12 aus, ob zufällig 12 mod m = 16 mod m gilt:
m=2: 12 mod 2 = 0 = 0 = 16 mod 2
m=3: 12 mod 3 = 0 ≠ 1 = 16 mod 3
m=4: 12 mod 4 = 0 = 0 = 16 mod 4
m=5: 12 mod 5 = 2 ≠ 1 = 16 mod 5
m=6: 12 mod 6 = 0 ≠ 4 = 16 mod 6
m=7: 12 mod 7 = 5 ≠ 2 = 16 mod 7
m=8: 12 mod 8 = 4 ≠ 0 = 16 mod 8
m=9: 12 mod 9 = 3 ≠ 7 = 16 mod 9
m=10: 12 mod 10 = 2 ≠ 6 = 16 mod 10
m=11: 12 mod 11 = 1 ≠ 5 = 16 mod 11
m=12: 12 mod 12 = 0 ≠ 4 = 16 mod 12
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (16 - 12) = 4 bestimmen:
die gesuchten Zahlen sind somit:
2; 4
