Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 98 mod 10.
Das nächst kleinere Vielfache von 10 ist 90, weil ja 9 ⋅ 10 = 90 ist.
Also bleibt als Rest eben noch 98 - 90 = 8.
Somit gilt: 98 mod 10 ≡ 8.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 50 und 59 für die gilt n ≡ 63 mod 6.
Das nächst kleinere Vielfache von 6 ist 60, weil ja 10 ⋅ 6 = 60 ist.
Also bleibt als Rest eben noch 63 - 60 = 3.
Somit gilt: 63 mod 6 ≡ 3.
Wir suchen also eine Zahl zwischen 50 und 59 für die gilt: n ≡ 3 mod 6.
Dazu suchen wir erstmal ein Vielfaches von 6 in der Nähe von 50, z.B. 48 = 8 ⋅ 6
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 6 , sondern ≡ 3 mod 6 sein, also addieren wir noch 3 auf die 48 und erhalten so 51.
Somit gilt: 51 ≡ 63 ≡ 3 mod 6.
Modulo addieren
Beispiel:
Berechne ohne WTR: (20000 - 4003) mod 4.
Um längere Rechnungen zu vermeiden, rechnen wir:
(20000 - 4003) mod 4 ≡ (20000 mod 4 - 4003 mod 4) mod 4.
20000 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 20000
= 20000
4003 mod 4 ≡ 3 mod 4 kann man relativ leicht bestimmen, weil ja 4003
= 4000
Somit gilt:
(20000 - 4003) mod 4 ≡ (0 - 3) mod 4 ≡ -3 mod 4 ≡ 1 mod 4.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (76 ⋅ 67) mod 11.
Um längere Rechnungen zu vermeiden, rechnen wir:
(76 ⋅ 67) mod 11 ≡ (76 mod 11 ⋅ 67 mod 11) mod 11.
76 mod 11 ≡ 10 mod 11 kann man relativ leicht bestimmen, weil ja 76 = 66 + 10 = 6 ⋅ 11 + 10 ist.
67 mod 11 ≡ 1 mod 11 kann man relativ leicht bestimmen, weil ja 67 = 66 + 1 = 6 ⋅ 11 + 1 ist.
Somit gilt:
(76 ⋅ 67) mod 11 ≡ (10 ⋅ 1) mod 11 ≡ 10 mod 11.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
21 mod m = 27 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 21 aus, ob zufällig 21 mod m = 27 mod m gilt:
m=2: 21 mod 2 = 1 = 1 = 27 mod 2
m=3: 21 mod 3 = 0 = 0 = 27 mod 3
m=4: 21 mod 4 = 1 ≠ 3 = 27 mod 4
m=5: 21 mod 5 = 1 ≠ 2 = 27 mod 5
m=6: 21 mod 6 = 3 = 3 = 27 mod 6
m=7: 21 mod 7 = 0 ≠ 6 = 27 mod 7
m=8: 21 mod 8 = 5 ≠ 3 = 27 mod 8
m=9: 21 mod 9 = 3 ≠ 0 = 27 mod 9
m=10: 21 mod 10 = 1 ≠ 7 = 27 mod 10
m=11: 21 mod 11 = 10 ≠ 5 = 27 mod 11
m=12: 21 mod 12 = 9 ≠ 3 = 27 mod 12
m=13: 21 mod 13 = 8 ≠ 1 = 27 mod 13
m=14: 21 mod 14 = 7 ≠ 13 = 27 mod 14
m=15: 21 mod 15 = 6 ≠ 12 = 27 mod 15
m=16: 21 mod 16 = 5 ≠ 11 = 27 mod 16
m=17: 21 mod 17 = 4 ≠ 10 = 27 mod 17
m=18: 21 mod 18 = 3 ≠ 9 = 27 mod 18
m=19: 21 mod 19 = 2 ≠ 8 = 27 mod 19
m=20: 21 mod 20 = 1 ≠ 7 = 27 mod 20
m=21: 21 mod 21 = 0 ≠ 6 = 27 mod 21
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (27 - 21) = 6 bestimmen:
die gesuchten Zahlen sind somit:
2; 3; 6
