Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 25 mod 6.
Das nächst kleinere Vielfache von 6 ist 24, weil ja 4 ⋅ 6 = 24 ist.
Also bleibt als Rest eben noch 25 - 24 = 1.
Somit gilt: 25 mod 6 ≡ 1.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 90 und 99 für die gilt n ≡ 23 mod 7.
Das nächst kleinere Vielfache von 7 ist 21, weil ja 3 ⋅ 7 = 21 ist.
Also bleibt als Rest eben noch 23 - 21 = 2.
Somit gilt: 23 mod 7 ≡ 2.
Wir suchen also eine Zahl zwischen 90 und 99 für die gilt: n ≡ 2 mod 7.
Dazu suchen wir erstmal ein Vielfaches von 7 in der Nähe von 90, z.B. 91 = 13 ⋅ 7
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 7 , sondern ≡ 2 mod 7 sein, also addieren wir noch 2 auf die 91 und erhalten so 93.
Somit gilt: 93 ≡ 23 ≡ 2 mod 7.
Modulo addieren
Beispiel:
Berechne ohne WTR: (1204 - 30001) mod 6.
Um längere Rechnungen zu vermeiden, rechnen wir:
(1204 - 30001) mod 6 ≡ (1204 mod 6 - 30001 mod 6) mod 6.
1204 mod 6 ≡ 4 mod 6 kann man relativ leicht bestimmen, weil ja 1204
= 1200
30001 mod 6 ≡ 1 mod 6 kann man relativ leicht bestimmen, weil ja 30001
= 30000
Somit gilt:
(1204 - 30001) mod 6 ≡ (4 - 1) mod 6 ≡ 3 mod 6.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (93 ⋅ 63) mod 3.
Um längere Rechnungen zu vermeiden, rechnen wir:
(93 ⋅ 63) mod 3 ≡ (93 mod 3 ⋅ 63 mod 3) mod 3.
93 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 93 = 93 + 0 = 31 ⋅ 3 + 0 ist.
63 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 63 = 63 + 0 = 21 ⋅ 3 + 0 ist.
Somit gilt:
(93 ⋅ 63) mod 3 ≡ (0 ⋅ 0) mod 3 ≡ 0 mod 3.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
15 mod m = 19 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 15 aus, ob zufällig 15 mod m = 19 mod m gilt:
m=2: 15 mod 2 = 1 = 1 = 19 mod 2
m=3: 15 mod 3 = 0 ≠ 1 = 19 mod 3
m=4: 15 mod 4 = 3 = 3 = 19 mod 4
m=5: 15 mod 5 = 0 ≠ 4 = 19 mod 5
m=6: 15 mod 6 = 3 ≠ 1 = 19 mod 6
m=7: 15 mod 7 = 1 ≠ 5 = 19 mod 7
m=8: 15 mod 8 = 7 ≠ 3 = 19 mod 8
m=9: 15 mod 9 = 6 ≠ 1 = 19 mod 9
m=10: 15 mod 10 = 5 ≠ 9 = 19 mod 10
m=11: 15 mod 11 = 4 ≠ 8 = 19 mod 11
m=12: 15 mod 12 = 3 ≠ 7 = 19 mod 12
m=13: 15 mod 13 = 2 ≠ 6 = 19 mod 13
m=14: 15 mod 14 = 1 ≠ 5 = 19 mod 14
m=15: 15 mod 15 = 0 ≠ 4 = 19 mod 15
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (19 - 15) = 4 bestimmen:
die gesuchten Zahlen sind somit:
2; 4
