Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 73 mod 5.

Lösung einblenden

Das nächst kleinere Vielfache von 5 ist 70, weil ja 14 ⋅ 5 = 70 ist.

Also bleibt als Rest eben noch 73 - 70 = 3.

Somit gilt: 73 mod 5 ≡ 3.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 90 und 99 für die gilt n ≡ 88 mod 7.

Lösung einblenden

Das nächst kleinere Vielfache von 7 ist 84, weil ja 12 ⋅ 7 = 84 ist.

Also bleibt als Rest eben noch 88 - 84 = 4.

Somit gilt: 88 mod 7 ≡ 4.

Wir suchen also eine Zahl zwischen 90 und 99 für die gilt: n ≡ 4 mod 7.

Dazu suchen wir erstmal ein Vielfaches von 7 in der Nähe von 90, z.B. 91 = 13 ⋅ 7

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 7 , sondern ≡ 4 mod 7 sein, also addieren wir noch 4 auf die 91 und erhalten so 95.

Somit gilt: 95 ≡ 88 ≡ 4 mod 7.

Modulo addieren

Beispiel:

Berechne ohne WTR: (82 + 12004) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(82 + 12004) mod 4 ≡ (82 mod 4 + 12004 mod 4) mod 4.

82 mod 4 ≡ 2 mod 4 kann man relativ leicht bestimmen, weil ja 82 = 80+2 = 4 ⋅ 20 +2.

12004 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 12004 = 12000+4 = 4 ⋅ 3000 +4.

Somit gilt:

(82 + 12004) mod 4 ≡ (2 + 0) mod 4 ≡ 2 mod 4.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (36 ⋅ 27) mod 6.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(36 ⋅ 27) mod 6 ≡ (36 mod 6 ⋅ 27 mod 6) mod 6.

36 mod 6 ≡ 0 mod 6 kann man relativ leicht bestimmen, weil ja 36 = 36 + 0 = 6 ⋅ 6 + 0 ist.

27 mod 6 ≡ 3 mod 6 kann man relativ leicht bestimmen, weil ja 27 = 24 + 3 = 4 ⋅ 6 + 3 ist.

Somit gilt:

(36 ⋅ 27) mod 6 ≡ (0 ⋅ 3) mod 6 ≡ 0 mod 6.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
12 mod m = 16 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 12 aus, ob zufällig 12 mod m = 16 mod m gilt:

m=2: 12 mod 2 = 0 = 0 = 16 mod 2

m=3: 12 mod 3 = 0 ≠ 1 = 16 mod 3

m=4: 12 mod 4 = 0 = 0 = 16 mod 4

m=5: 12 mod 5 = 2 ≠ 1 = 16 mod 5

m=6: 12 mod 6 = 0 ≠ 4 = 16 mod 6

m=7: 12 mod 7 = 5 ≠ 2 = 16 mod 7

m=8: 12 mod 8 = 4 ≠ 0 = 16 mod 8

m=9: 12 mod 9 = 3 ≠ 7 = 16 mod 9

m=10: 12 mod 10 = 2 ≠ 6 = 16 mod 10

m=11: 12 mod 11 = 1 ≠ 5 = 16 mod 11

m=12: 12 mod 12 = 0 ≠ 4 = 16 mod 12

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (16 - 12) = 4 bestimmen:

die gesuchten Zahlen sind somit:

2; 4