Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 34 mod 7.

Lösung einblenden

Das nächst kleinere Vielfache von 7 ist 28, weil ja 4 ⋅ 7 = 28 ist.

Also bleibt als Rest eben noch 34 - 28 = 6.

Somit gilt: 34 mod 7 ≡ 6.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 40 und 49 für die gilt n ≡ 59 mod 3.

Lösung einblenden

Das nächst kleinere Vielfache von 3 ist 57, weil ja 19 ⋅ 3 = 57 ist.

Also bleibt als Rest eben noch 59 - 57 = 2.

Somit gilt: 59 mod 3 ≡ 2.

Wir suchen also eine Zahl zwischen 40 und 49 für die gilt: n ≡ 2 mod 3.

Dazu suchen wir erstmal ein Vielfaches von 3 in der Nähe von 40, z.B. 39 = 13 ⋅ 3

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 3 , sondern ≡ 2 mod 3 sein, also addieren wir noch 2 auf die 39 und erhalten so 41.

Somit gilt: 41 ≡ 59 ≡ 2 mod 3.

Modulo addieren

Beispiel:

Berechne ohne WTR: (236 + 1196) mod 6.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(236 + 1196) mod 6 ≡ (236 mod 6 + 1196 mod 6) mod 6.

236 mod 6 ≡ 2 mod 6 kann man relativ leicht bestimmen, weil ja 236 = 240-4 = 6 ⋅ 40 -4 = 6 ⋅ 40 - 6 + 2.

1196 mod 6 ≡ 2 mod 6 kann man relativ leicht bestimmen, weil ja 1196 = 1200-4 = 6 ⋅ 200 -4 = 6 ⋅ 200 - 6 + 2.

Somit gilt:

(236 + 1196) mod 6 ≡ (2 + 2) mod 6 ≡ 4 mod 6.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (62 ⋅ 20) mod 10.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(62 ⋅ 20) mod 10 ≡ (62 mod 10 ⋅ 20 mod 10) mod 10.

62 mod 10 ≡ 2 mod 10 kann man relativ leicht bestimmen, weil ja 62 = 60 + 2 = 6 ⋅ 10 + 2 ist.

20 mod 10 ≡ 0 mod 10 kann man relativ leicht bestimmen, weil ja 20 = 20 + 0 = 2 ⋅ 10 + 0 ist.

Somit gilt:

(62 ⋅ 20) mod 10 ≡ (2 ⋅ 0) mod 10 ≡ 0 mod 10.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
12 mod m = 18 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 12 aus, ob zufällig 12 mod m = 18 mod m gilt:

m=2: 12 mod 2 = 0 = 0 = 18 mod 2

m=3: 12 mod 3 = 0 = 0 = 18 mod 3

m=4: 12 mod 4 = 0 ≠ 2 = 18 mod 4

m=5: 12 mod 5 = 2 ≠ 3 = 18 mod 5

m=6: 12 mod 6 = 0 = 0 = 18 mod 6

m=7: 12 mod 7 = 5 ≠ 4 = 18 mod 7

m=8: 12 mod 8 = 4 ≠ 2 = 18 mod 8

m=9: 12 mod 9 = 3 ≠ 0 = 18 mod 9

m=10: 12 mod 10 = 2 ≠ 8 = 18 mod 10

m=11: 12 mod 11 = 1 ≠ 7 = 18 mod 11

m=12: 12 mod 12 = 0 ≠ 6 = 18 mod 12

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (18 - 12) = 6 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 6