Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 58 mod 8.

Lösung einblenden

Das nächst kleinere Vielfache von 8 ist 56, weil ja 7 ⋅ 8 = 56 ist.

Also bleibt als Rest eben noch 58 - 56 = 2.

Somit gilt: 58 mod 8 ≡ 2.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 30 und 39 für die gilt n ≡ 23 mod 8.

Lösung einblenden

Das nächst kleinere Vielfache von 8 ist 16, weil ja 2 ⋅ 8 = 16 ist.

Also bleibt als Rest eben noch 23 - 16 = 7.

Somit gilt: 23 mod 8 ≡ 7.

Wir suchen also eine Zahl zwischen 30 und 39 für die gilt: n ≡ 7 mod 8.

Dazu suchen wir erstmal ein Vielfaches von 8 in der Nähe von 30, z.B. 24 = 3 ⋅ 8

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 8 , sondern ≡ 7 mod 8 sein, also addieren wir noch 7 auf die 24 und erhalten so 31.

Somit gilt: 31 ≡ 23 ≡ 7 mod 8.

Modulo addieren

Beispiel:

Berechne ohne WTR: (1503 + 1498) mod 3.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(1503 + 1498) mod 3 ≡ (1503 mod 3 + 1498 mod 3) mod 3.

1503 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 1503 = 1500+3 = 3 ⋅ 500 +3.

1498 mod 3 ≡ 1 mod 3 kann man relativ leicht bestimmen, weil ja 1498 = 1500-2 = 3 ⋅ 500 -2 = 3 ⋅ 500 - 3 + 1.

Somit gilt:

(1503 + 1498) mod 3 ≡ (0 + 1) mod 3 ≡ 1 mod 3.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (28 ⋅ 90) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(28 ⋅ 90) mod 4 ≡ (28 mod 4 ⋅ 90 mod 4) mod 4.

28 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 28 = 28 + 0 = 7 ⋅ 4 + 0 ist.

90 mod 4 ≡ 2 mod 4 kann man relativ leicht bestimmen, weil ja 90 = 88 + 2 = 22 ⋅ 4 + 2 ist.

Somit gilt:

(28 ⋅ 90) mod 4 ≡ (0 ⋅ 2) mod 4 ≡ 0 mod 4.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
8 mod m = 12 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 8 aus, ob zufällig 8 mod m = 12 mod m gilt:

m=2: 8 mod 2 = 0 = 0 = 12 mod 2

m=3: 8 mod 3 = 2 ≠ 0 = 12 mod 3

m=4: 8 mod 4 = 0 = 0 = 12 mod 4

m=5: 8 mod 5 = 3 ≠ 2 = 12 mod 5

m=6: 8 mod 6 = 2 ≠ 0 = 12 mod 6

m=7: 8 mod 7 = 1 ≠ 5 = 12 mod 7

m=8: 8 mod 8 = 0 ≠ 4 = 12 mod 8

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (12 - 8) = 4 bestimmen:

die gesuchten Zahlen sind somit:

2; 4