Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 23 mod 7.
Das nächst kleinere Vielfache von 7 ist 21, weil ja 3 ⋅ 7 = 21 ist.
Also bleibt als Rest eben noch 23 - 21 = 2.
Somit gilt: 23 mod 7 ≡ 2.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 70 und 80 für die gilt n ≡ 67 mod 10.
Das nächst kleinere Vielfache von 10 ist 60, weil ja 6 ⋅ 10 = 60 ist.
Also bleibt als Rest eben noch 67 - 60 = 7.
Somit gilt: 67 mod 10 ≡ 7.
Wir suchen also eine Zahl zwischen 70 und 80 für die gilt: n ≡ 7 mod 10.
Dazu suchen wir erstmal ein Vielfaches von 10 in der Nähe von 70, z.B. 70 = 7 ⋅ 10
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 10 , sondern ≡ 7 mod 10 sein, also addieren wir noch 7 auf die 70 und erhalten so 77.
Somit gilt: 77 ≡ 67 ≡ 7 mod 10.
Modulo addieren
Beispiel:
Berechne ohne WTR: (4494 - 45004) mod 9.
Um längere Rechnungen zu vermeiden, rechnen wir:
(4494 - 45004) mod 9 ≡ (4494 mod 9 - 45004 mod 9) mod 9.
4494 mod 9 ≡ 3 mod 9 kann man relativ leicht bestimmen, weil ja 4494
= 4500
45004 mod 9 ≡ 4 mod 9 kann man relativ leicht bestimmen, weil ja 45004
= 45000
Somit gilt:
(4494 - 45004) mod 9 ≡ (3 - 4) mod 9 ≡ -1 mod 9 ≡ 8 mod 9.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (48 ⋅ 74) mod 3.
Um längere Rechnungen zu vermeiden, rechnen wir:
(48 ⋅ 74) mod 3 ≡ (48 mod 3 ⋅ 74 mod 3) mod 3.
48 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 48 = 48 + 0 = 16 ⋅ 3 + 0 ist.
74 mod 3 ≡ 2 mod 3 kann man relativ leicht bestimmen, weil ja 74 = 72 + 2 = 24 ⋅ 3 + 2 ist.
Somit gilt:
(48 ⋅ 74) mod 3 ≡ (0 ⋅ 2) mod 3 ≡ 0 mod 3.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
22 mod m = 28 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 22 aus, ob zufällig 22 mod m = 28 mod m gilt:
m=2: 22 mod 2 = 0 = 0 = 28 mod 2
m=3: 22 mod 3 = 1 = 1 = 28 mod 3
m=4: 22 mod 4 = 2 ≠ 0 = 28 mod 4
m=5: 22 mod 5 = 2 ≠ 3 = 28 mod 5
m=6: 22 mod 6 = 4 = 4 = 28 mod 6
m=7: 22 mod 7 = 1 ≠ 0 = 28 mod 7
m=8: 22 mod 8 = 6 ≠ 4 = 28 mod 8
m=9: 22 mod 9 = 4 ≠ 1 = 28 mod 9
m=10: 22 mod 10 = 2 ≠ 8 = 28 mod 10
m=11: 22 mod 11 = 0 ≠ 6 = 28 mod 11
m=12: 22 mod 12 = 10 ≠ 4 = 28 mod 12
m=13: 22 mod 13 = 9 ≠ 2 = 28 mod 13
m=14: 22 mod 14 = 8 ≠ 0 = 28 mod 14
m=15: 22 mod 15 = 7 ≠ 13 = 28 mod 15
m=16: 22 mod 16 = 6 ≠ 12 = 28 mod 16
m=17: 22 mod 17 = 5 ≠ 11 = 28 mod 17
m=18: 22 mod 18 = 4 ≠ 10 = 28 mod 18
m=19: 22 mod 19 = 3 ≠ 9 = 28 mod 19
m=20: 22 mod 20 = 2 ≠ 8 = 28 mod 20
m=21: 22 mod 21 = 1 ≠ 7 = 28 mod 21
m=22: 22 mod 22 = 0 ≠ 6 = 28 mod 22
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (28 - 22) = 6 bestimmen:
die gesuchten Zahlen sind somit:
2; 3; 6
