Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 20 mod 4.

Lösung einblenden

Das nächst kleinere Vielfache von 4 ist 20, weil ja 5 ⋅ 4 = 20 ist.

Also bleibt als Rest eben noch 20 - 20 = 0.

Somit gilt: 20 mod 4 ≡ 0.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 40 und 51 für die gilt n ≡ 39 mod 11.

Lösung einblenden

Das nächst kleinere Vielfache von 11 ist 33, weil ja 3 ⋅ 11 = 33 ist.

Also bleibt als Rest eben noch 39 - 33 = 6.

Somit gilt: 39 mod 11 ≡ 6.

Wir suchen also eine Zahl zwischen 40 und 51 für die gilt: n ≡ 6 mod 11.

Dazu suchen wir erstmal ein Vielfaches von 11 in der Nähe von 40, z.B. 44 = 4 ⋅ 11

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 11 , sondern ≡ 6 mod 11 sein, also addieren wir noch 6 auf die 44 und erhalten so 50.

Somit gilt: 50 ≡ 39 ≡ 6 mod 11.

Modulo addieren

Beispiel:

Berechne ohne WTR: (280 - 3498) mod 7.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(280 - 3498) mod 7 ≡ (280 mod 7 - 3498 mod 7) mod 7.

280 mod 7 ≡ 0 mod 7 kann man relativ leicht bestimmen, weil ja 280 = 280+0 = 7 ⋅ 40 +0.

3498 mod 7 ≡ 5 mod 7 kann man relativ leicht bestimmen, weil ja 3498 = 3500-2 = 7 ⋅ 500 -2 = 7 ⋅ 500 - 7 + 5.

Somit gilt:

(280 - 3498) mod 7 ≡ (0 - 5) mod 7 ≡ -5 mod 7 ≡ 2 mod 7.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (50 ⋅ 20) mod 10.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(50 ⋅ 20) mod 10 ≡ (50 mod 10 ⋅ 20 mod 10) mod 10.

50 mod 10 ≡ 0 mod 10 kann man relativ leicht bestimmen, weil ja 50 = 50 + 0 = 5 ⋅ 10 + 0 ist.

20 mod 10 ≡ 0 mod 10 kann man relativ leicht bestimmen, weil ja 20 = 20 + 0 = 2 ⋅ 10 + 0 ist.

Somit gilt:

(50 ⋅ 20) mod 10 ≡ (0 ⋅ 0) mod 10 ≡ 0 mod 10.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
11 mod m = 15 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 11 aus, ob zufällig 11 mod m = 15 mod m gilt:

m=2: 11 mod 2 = 1 = 1 = 15 mod 2

m=3: 11 mod 3 = 2 ≠ 0 = 15 mod 3

m=4: 11 mod 4 = 3 = 3 = 15 mod 4

m=5: 11 mod 5 = 1 ≠ 0 = 15 mod 5

m=6: 11 mod 6 = 5 ≠ 3 = 15 mod 6

m=7: 11 mod 7 = 4 ≠ 1 = 15 mod 7

m=8: 11 mod 8 = 3 ≠ 7 = 15 mod 8

m=9: 11 mod 9 = 2 ≠ 6 = 15 mod 9

m=10: 11 mod 10 = 1 ≠ 5 = 15 mod 10

m=11: 11 mod 11 = 0 ≠ 4 = 15 mod 11

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (15 - 11) = 4 bestimmen:

die gesuchten Zahlen sind somit:

2; 4