Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 40 mod 5.

Lösung einblenden

Das nächst kleinere Vielfache von 5 ist 40, weil ja 8 ⋅ 5 = 40 ist.

Also bleibt als Rest eben noch 40 - 40 = 0.

Somit gilt: 40 mod 5 ≡ 0.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 70 und 79 für die gilt n ≡ 85 mod 4.

Lösung einblenden

Das nächst kleinere Vielfache von 4 ist 84, weil ja 21 ⋅ 4 = 84 ist.

Also bleibt als Rest eben noch 85 - 84 = 1.

Somit gilt: 85 mod 4 ≡ 1.

Wir suchen also eine Zahl zwischen 70 und 79 für die gilt: n ≡ 1 mod 4.

Dazu suchen wir erstmal ein Vielfaches von 4 in der Nähe von 70, z.B. 72 = 18 ⋅ 4

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 4 , sondern ≡ 1 mod 4 sein, also addieren wir noch 1 auf die 72 und erhalten so 73.

Somit gilt: 73 ≡ 85 ≡ 1 mod 4.

Modulo addieren

Beispiel:

Berechne ohne WTR: (156 - 4000) mod 8.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(156 - 4000) mod 8 ≡ (156 mod 8 - 4000 mod 8) mod 8.

156 mod 8 ≡ 4 mod 8 kann man relativ leicht bestimmen, weil ja 156 = 160-4 = 8 ⋅ 20 -4 = 8 ⋅ 20 - 8 + 4.

4000 mod 8 ≡ 0 mod 8 kann man relativ leicht bestimmen, weil ja 4000 = 4000+0 = 8 ⋅ 500 +0.

Somit gilt:

(156 - 4000) mod 8 ≡ (4 - 0) mod 8 ≡ 4 mod 8.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (87 ⋅ 66) mod 11.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(87 ⋅ 66) mod 11 ≡ (87 mod 11 ⋅ 66 mod 11) mod 11.

87 mod 11 ≡ 10 mod 11 kann man relativ leicht bestimmen, weil ja 87 = 77 + 10 = 7 ⋅ 11 + 10 ist.

66 mod 11 ≡ 0 mod 11 kann man relativ leicht bestimmen, weil ja 66 = 66 + 0 = 6 ⋅ 11 + 0 ist.

Somit gilt:

(87 ⋅ 66) mod 11 ≡ (10 ⋅ 0) mod 11 ≡ 0 mod 11.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
12 mod m = 18 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 12 aus, ob zufällig 12 mod m = 18 mod m gilt:

m=2: 12 mod 2 = 0 = 0 = 18 mod 2

m=3: 12 mod 3 = 0 = 0 = 18 mod 3

m=4: 12 mod 4 = 0 ≠ 2 = 18 mod 4

m=5: 12 mod 5 = 2 ≠ 3 = 18 mod 5

m=6: 12 mod 6 = 0 = 0 = 18 mod 6

m=7: 12 mod 7 = 5 ≠ 4 = 18 mod 7

m=8: 12 mod 8 = 4 ≠ 2 = 18 mod 8

m=9: 12 mod 9 = 3 ≠ 0 = 18 mod 9

m=10: 12 mod 10 = 2 ≠ 8 = 18 mod 10

m=11: 12 mod 11 = 1 ≠ 7 = 18 mod 11

m=12: 12 mod 12 = 0 ≠ 6 = 18 mod 12

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (18 - 12) = 6 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 6