Aufgabenbeispiele von exponent. Wachstum
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da < 1 ist, werden die Funktionswerte mit jedem Zeitschritt kleiner, und zwar auf das -fache, also auf % des vorherigen Funktionswertes.
Die prozentuale Abnahme beträgt also 100% - 65% = 35 %
c und a gegeben
Beispiel:
Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 25% vermehrt. Zu Beginn der Aufzeichnung registriert man 8000 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 6 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 28000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=8000 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 25% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 25% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,25 ⋅ B. Somit ist das a=1,25.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=6 Wochen, also f(6):
f(6) = ≈ 30517,578.
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 28000 Nutzer ist, also f(t) = 28000:
= | |: | ||
= | |lg(⋅) | ||
= | |||
= | |: | ||
= |
= |
Nach ca. 5,614 Wochen ist also die Anzahl der Nutzer = 28000 Nutzer.
c und ein Funktionswert gegeben
Beispiel:
Bei der Anzahl der Nutzer einer Internetseite kann man von exponentiellem Wachstum ausgehen. Zu Beginn der Aufzeichnung registriert man 6000 Nutzer. Nach 11 Wochen zählt man bereits 37055,56 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 7 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 26000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=6000 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm mit einem Wachstumsfaktor a sein muss.
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 11 Wochen der Bestand 37055.56 Nutzer ist, also f(11) = 37055.56. Dies setzen wir in unsern bisherigen Funktionterm ein:
= | |: | ||
= | | | ||
|
= |
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=7 Wochen, also f(7):
f(7) =
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 26000 Nutzer ist, also f(t) = 26000:
|
= | |: |
|
|
= | |lg(⋅) | |
|
= |
|
|
|
= |
|
|:
|
|
= |
|
|
= |
|
Nach ca. 8,859 Wochen ist also die Anzahl der Nutzer = 26000 Nutzer.
a und ein Funktionswert gegeben
Beispiel:
Ein radioaktives Element verliert jeden Tag 4% seines Bestands. 10 Tage nach Beobachtungsbeginn sind nur noch 6,65kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 13 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 6,4kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Abnahme um 4% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 4% weggehen,
also Bneu
= B -
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 10 Tage der Bestand 6.65 kg ist,
also f(10) = 6.65. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 0.9610 = 6.65
c ⋅ 0.66483 = 6.65 | : 0.66483
c = 10
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=13 Tage, also f(13):
f(13) =
zu b)
Hier wird gefragt, wann der Bestand = 6.4 kg ist, also f(t) = 6.4:
|
= | |: |
|
|
= | |lg(⋅) | |
|
= |
|
|
|
= |
|
|:
|
|
= |
|
|
= |
|
Nach ca. 10,933 Tage ist also der Bestand = 6.4 kg.
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Verdopplungszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.103(
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 15% abnimmt. Wann hat sich die Anzahl dieser Insektenart halbiert?
Die prozentuale Abnahme um 15% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 15% weggehen,
also Bneu
= B -
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.85(
Exponentialterm mit Halbwertszeit best.
Beispiel:
Bei einer Bakterienkultur geht davon aus, dass sie sich innerhalb von 6,6 Stunden verdoppelt. Zu Beobachtungsbeginn umfasste die Kultur 17 Milionen Bakterien. Bestimme den Funktionsterm der Exponentialfunktion, die die Bakterienanzahl in Milionen nach t Stunden angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 6.6 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
|
= | |
|
|
a1 | = |
|
≈
|
a2 | = |
|
≈
|
Das gesuchte a ist somit