Aufgabenbeispiele von exponent. Wachstum
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da > 1 ist, werden die Funktionswerte mit jedem Zeitschritt größer, und zwar auf das -fache, also auf % des vorherigen Funktionswertes.
Die prozentuale Zunahme beträgt also 125% - 100% = 25 %
c und a gegeben
Beispiel:
Ein Staat verliert jedes Jahr 2,1% seiner Bevölkerung. Zu Beobachtungsbeginn hat das Land 55 Millionen Einwohner. a) Wie viel Millionen Einwohner hat der Staat noch nach 10 Jahren? b) Wann hat das Land nur noch 45 Millionen Einwohner?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=55 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Abnahme um 2.1% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 2.1% weggehen,
also Bneu
= B - ⋅B = (1 - ) ⋅ B = 0,979 ⋅ B. Somit ist das a=0,979.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=10 Jahre, also f(10):
f(10) = ≈ 44,483.
zu b)
Hier wird gefragt, wann der Bestand = 45 Millionen Einwohner ist, also f(t) = 45:
= | |: | ||
= | |lg(⋅) | ||
= | |||
= | |: | ||
= |
= |
Nach ca. 9,455 Jahre ist also der Bestand = 45 Millionen Einwohner.
c und ein Funktionswert gegeben
Beispiel:
Bei der Anzahl der Nutzer einer Internetseite kann man von exponentiellem Wachstum ausgehen. Zu Beginn der Aufzeichnung registriert man 4000 Nutzer. Nach 8 Wochen zählt man bereits 16085,54 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 5 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 34000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=4000 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm mit einem Wachstumsfaktor a sein muss.
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 8 Wochen der Bestand 16085.54 Nutzer ist, also f(8) = 16085.54. Dies setzen wir in unsern bisherigen Funktionterm ein:
= | |: | ||
= | | | ||
a1 | = |
|
=
|
a2 | = |
|
=
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=5 Wochen, also f(5):
f(5) =
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 34000 Nutzer ist, also f(t) = 34000:
|
= | |: |
|
|
= | |lg(⋅) | |
|
= |
|
|
|
= |
|
|:
|
|
= |
|
|
= |
|
Nach ca. 12,303 Wochen ist also die Anzahl der Nutzer = 34000 Nutzer.
a und ein Funktionswert gegeben
Beispiel:
Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 15% vermehrt. Nach 13 Wochen zählt man bereits 18458,36 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 9 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 4500 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Zunahme um 15% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 15% dazukommen,
also Bneu
= B +
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 13 Wochen der Bestand 18458.36 Nutzer ist,
also f(13) = 18458.36. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 1.1513 = 18458.36
c ⋅ 6.15279 = 18458.36 | : 6.15279
c = 3000
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=9 Wochen, also f(9):
f(9) =
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 4500 Nutzer ist, also f(t) = 4500:
|
= | |: |
|
|
= | |lg(⋅) | |
|
= |
|
|
|
= |
|
|:
|
|
= |
|
|
= |
|
Nach ca. 2,901 Wochen ist also die Anzahl der Nutzer = 4500 Nutzer.
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Halbwertszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.966(
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 7% abnimmt. Wann hat sich die Anzahl dieser Insektenart halbiert?
Die prozentuale Abnahme um 7% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 7% weggehen,
also Bneu
= B -
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.93(
Exponentialterm mit Halbwertszeit best.
Beispiel:
Alle 4,4 Wochen verdoppelt sich die Anzahl der Nutzer einer Internetseite. Zu Beginn der Aufzeichnung registriert man 8000 Nutzer.Bestimme den Funktionsterm der Exponentialfunktion, die die Anzahl der Nutzer nach t Wochen angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 4.4 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
|
= | |
|
|
a1 | = |
|
≈
|
a2 | = |
|
≈
|
Das gesuchte a ist somit