Aufgabenbeispiele von exponent. Wachstum
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da > 1 ist, werden die Funktionswerte mit jedem Zeitschritt größer, und zwar auf das -fache, also auf % des vorherigen Funktionswertes.
Die prozentuale Zunahme beträgt also 125% - 100% = 25 %
c und a gegeben
Beispiel:
Ein Konto wird mit 2% verzinst. Zu Beginn sind 3000€ auf dem Konto. a) Wie hoch ist der Kontostand nach 10 Jahren? b) Wann ist der Kontostand auf 3500€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=3000 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 2% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 2% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,02 ⋅ B. Somit ist das a=1,02.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=10 Jahre, also f(10):
f(10) = ≈ 3656,983.
zu b)
Hier wird gefragt, wann der Kontostand = 3500 € ist, also f(t) = 3500:
= | |: | ||
= | |lg(⋅) | ||
= | |||
= | |: | ||
= |
= |
Nach ca. 7,784 Jahre ist also der Kontostand = 3500 €.
c und ein Funktionswert gegeben
Beispiel:
Von einem radioaktiven Element sind zu Beobachtungsbeginn 50kg vorhanden. Nach 2 Tagen nach sind nur noch 39,61kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 12 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 30kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=50 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm mit einem Wachstumsfaktor a sein muss.
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 2 Tage der Bestand 39.61 kg ist, also f(2) = 39.61. Dies setzen wir in unsern bisherigen Funktionterm ein:
= | |: | ||
= | | | ||
a1 | = |
|
≈
|
a2 | = |
|
≈
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=12 Tage, also f(12):
f(12) =
zu b)
Hier wird gefragt, wann der Bestand = 30 kg ist, also f(t) = 30:
|
= | |: |
|
|
= | |lg(⋅) | |
|
= |
|
|
|
= |
|
|:
|
|
= |
|
|
= |
|
Nach ca. 4,384 Tage ist also der Bestand = 30 kg.
a und ein Funktionswert gegeben
Beispiel:
Ein radioaktives Element verliert jeden Tag 4% seines Bestands. 10 Tage nach Beobachtungsbeginn sind nur noch 19,94kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 13 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 20kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Abnahme um 4% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 4% weggehen,
also Bneu
= B -
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 10 Tage der Bestand 19.94 kg ist,
also f(10) = 19.94. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 0.9610 = 19.94
c ⋅ 0.66483 = 19.94 | : 0.66483
c = 30
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=13 Tage, also f(13):
f(13) =
zu b)
Hier wird gefragt, wann der Bestand = 20 kg ist, also f(t) = 20:
|
= | |: |
|
|
= | |lg(⋅) | |
|
= |
|
|
|
= |
|
|:
|
|
= |
|
|
= |
|
Nach ca. 9,933 Tage ist also der Bestand = 20 kg.
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Verdopplungszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.086(
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 2%. Bestimme die Zeit bis sich die Größe der Bakterienkultur verdoppelt hat.
Die prozentuale Zunahme um 2% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 2% dazukommen,
also Bneu
= B +
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.02(
Exponentialterm mit Halbwertszeit best.
Beispiel:
In einem Land halbiert sich die Anzahl einer bestimmten Insektenart alle 5 Jahre. Zu Beginn der Beobachtung wurden 12 Millionen dieser Insekten geschätzt.Bestimme den Funktionsterm der Exponentialfunktion, die die Anzahl in Milionen der Insekten in Millionen nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga(
Also 5 = loga(
|
= | |
|
|
|
= |
|
Das gesuchte a ist somit