Aufgabenbeispiele von Funktionsterm bestimmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Term bestimmen (1 Punktprobe)

Beispiel:

Ein Graph einer Exponentialfunktion f mit f(x)= a x (a>0) verläuft durch den Punkt P(0.5|7). Bestimme a.

Lösung einblenden

Wir setzen einfach den Punkt A(0.5|7) in den Funktionsterm f(x)= a x ein und erhalten so die Gleichung:

7 = a0.5 = a | ↑²

49 = a

Das gesuchte a ist somit 49 (Der gesuchte Funktionsterm f(x)= 49 x )

Term bestimmen (2 Punktproben)

Beispiel:

Bestimme c und a>0 so, dass die Punkte A(1|-4 ) und B(3|-16 ) auf dem Graphen der Funktion f mit f(x)= c · a x (a>0) liegen.

Lösung einblenden

Wir setzen einfach die beiden Punkte A(1|-4 ) und B(3|-16 ) in den Funktionsterm f(x)= c · a x ein und erhalten so die beiden Gleichungen:

I: -4 = c · a
II: -16 = c · a 3

Wenn wir I mit a durchdividieren, erhalten wir

I: -4 1 a = c.

Dies können wir gleich in II einsetzen und nach a auflösen:

II: -16 = - 4 a · a 3

also

II: -16 = -4 a 2

-4 a 2 = -16 |: ( -4 )
a 2 = 4 | 2
a1 = - 4 = -2
a2 = 4 = 2

Wegen a>0 fällt die negative Lösung weg.

Von oben (I) wissen wir bereits: -4 1 a = c

mit a=2 eingesetzt erhalten wir so: -2 = c

Der gesuchte Funktionsterm g(x) ist somit: f(x)= -2 2 x

Term aus Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme den Funktionsterm c · a x der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.

Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.

Lösung einblenden

Der Graph schneidet die y-Achse im Punkt (0|1), also gilt f(0)=1.

In den allgemeinen Funktionsterm f(x)= c · a x eingesezt bedeutet das: 1 = c · a 0 = c ⋅ 1.

Dadurch wissen wir nun schon: c = 1 , also f(x)= a x .

Außerdem können wir den Punkt (1|3) auf dem Graphen ablesen, also git f(1) = 3.

In unseren Funktionsterm f(x)= a x eingesezt bedeutet das: 3 = a 1 = a .

Es gilt also: 3 = a

Somit ist der Funtionsterm: f(x)= 3 x