Aufgabenbeispiele von Logarithmus

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 19 (361) .

Lösung einblenden

Wir suchen den Logarithmus von 361 zur Basis 19, also die Hochzahl mit der man 19 potenzieren muss, um auf 361 zu kommen.

Also was muss in das Kästchen, damit 19 = 361 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 19 (361) = 2, eben weil 192 = 361 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 4 ( 1 64 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 64 zur Basis 4, also die Hochzahl mit der man 4 potenzieren muss, um auf 1 64 zu kommen.

Also was muss in das Kästchen, damit 4 = 1 64 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 4-Potenz zu schreiben versuchen, also 4 = 1 64

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 4 ( 1 64 ) = -3, eben weil 4-3 = 1 64 gilt .

log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 3 ( 1 3 ) .

Lösung einblenden

Zuerst schreiben wir 1 3 um: 1 3 = 3 - 1 2

log 3 ( 1 3 ) = log 3 ( 3 - 1 2 ) heißt, dass wir den Logarithmus von 3 - 1 2 zur Basis 3 suchen, also die Hochzahl mit der man 3 potenzieren muss, um auf 3 - 1 2 zu kommen.

Also was muss in das Kästchen, damit 3 = 3 - 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 3 ( 1 3 ) = log 3 ( 3 - 1 2 ) = - 1 2 , eben weil 3 - 1 2 = 1 3 gilt .

log im Interval bestimmen

Beispiel:

Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus log 5 ( 1 3 ) liegt.

Lösung einblenden

Wir suchen 5er-Potenzen in der Näher von 1 3 , also eine die gerade noch kleiner und eine die schon größer als 1 3 ist.

Dabei kommt man auf 1 5 = 1 5 = 5-1 < 1 3 und auf 1 = 1 = 5-0 > 1 3 .

Und da wir bei log 5 ( 1 3 ) ja das ☐ von 5 = 1 3 suchen, muss dieses ☐ irgendwo zwischen -1 und -0 liegen, wegen:
5-1 = 1 5 = 1 5 < 1 3 < 1 = 1 = 5-0

Es gilt somit: -1 < log 5 ( 1 3 ) < -0

1. Logarithmusgesetz einfach

Beispiel:

Vereinfache lg( 0,001 x ) -2 lg( x ) so, dass das Argument des Logarithmus möglichst einfach wird.

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
lg( 0,001 x ) -2 lg( x )
= lg( 0,001 ) - lg( x ) -2 lg( x )
= lg( 10 -3 ) - lg( x ) -2 lg( x )
= -3 - lg( x ) -2 lg( x )
= -3 lg( x ) -3

1. Logarithmusgesetz rückwärts

Beispiel:

Vereinfache: lg( 300 ) - lg( 3 ) .

Lösung einblenden

lg( 300 ) - lg( 3 )

Jetzt wenden wir das Logarithmusgesetz log( a b ) = log(a) - log(b) rückwärts an:

= lg( 300 3 )

= lg( 100 )

= lg( 10 2 )

= 2

2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term lg( x 2 ) + lg( 1 x ) + lg( x 4 ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
lg( x 2 ) + lg( 1 x ) + lg( x 4 )
= lg( x 2 ) + lg( x - 1 2 ) + lg( x 4 )
= 2 lg( x ) - 1 2 lg( x ) +4 lg( x )
= 11 2 lg( x )

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term - lg( 1 4 x 2 ) + lg( 25 2 ) - lg( 1 20 x 2 ) soweit wie möglich.

Lösung einblenden

- lg( 1 4 x 2 ) + lg( 25 2 ) - lg( 1 20 x 2 )

= - lg( 1 4 x 2 ) + lg( 25 2 ) - lg( 1 20 x -2 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= -( lg( 1 4 ) + lg( x 2 ) ) + ( lg( 25 2 ) + lg( 1 ) ) - ( lg( 1 20 ) + lg( 1 x 2 ) )

= - lg( 1 4 ) - lg( x 2 ) + lg( 25 2 ) + lg( 1 ) - lg( 1 20 ) - lg( 1 x 2 )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= - lg( 1 4 ) -2 lg( x ) + lg( 25 2 ) +0 - lg( 1 20 ) +2 lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= - lg( 1 ) + lg( 4 ) -2 lg( x ) + lg( 25 ) - lg( 2 ) +0 - lg( 1 ) + lg( 20 ) +2 lg( x )

= lg( 25 ) + lg( 20 ) + lg( 4 ) - lg( 2 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= lg( 25 · 20 · 4 2 )

= lg( 1000 )

= lg( 10 3 )

= 3