Aufgabenbeispiele von Logarithmus

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 3 (9) .

Lösung einblenden

Wir suchen den Logarithmus von 9 zur Basis 3, also die Hochzahl mit der man 3 potenzieren muss, um auf 9 zu kommen.

Also was muss in das Kästchen, damit 3 = 9 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 3 (9) = 2, eben weil 32 = 9 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 5 ( 1 5 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 5 zur Basis 5, also die Hochzahl mit der man 5 potenzieren muss, um auf 1 5 zu kommen.

Also was muss in das Kästchen, damit 5 = 1 5 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 5-Potenz zu schreiben versuchen, also 5 = 1 5

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 5 ( 1 5 ) = -1, eben weil 5-1 = 1 5 gilt .

log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 5 ( 1 5 ) .

Lösung einblenden

Zuerst schreiben wir 1 5 um: 1 5 = 5 - 1 2

log 5 ( 1 5 ) = log 5 ( 5 - 1 2 ) heißt, dass wir den Logarithmus von 5 - 1 2 zur Basis 5 suchen, also die Hochzahl mit der man 5 potenzieren muss, um auf 5 - 1 2 zu kommen.

Also was muss in das Kästchen, damit 5 = 5 - 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 5 ( 1 5 ) = log 5 ( 5 - 1 2 ) = - 1 2 , eben weil 5 - 1 2 = 1 5 gilt .

log im Interval bestimmen

Beispiel:

Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus log 5 (87) liegt.

Lösung einblenden

Wir suchen 5er-Potenzen in der Näher von 87, also eine die gerade noch kleiner und eine die schon größer als 87 ist.

Dabei kommt man auf 5 2 = 52 < 87 und auf 5 3 = 53 > 87.

Und da wir bei log 5 (87) ja das ☐ von 5 = 87 suchen, muss dieses ☐ irgendwo zwischen 2 und 3 liegen, wegen:
52 = 5 2 < 87 < 5 3 = 53

Es gilt somit: 2 < log 5 (87) < 3

1. Logarithmusgesetz einfach

Beispiel:

Vereinfache lg( 0,001x ) +4 lg( x ) so, dass das Argument des Logarithmus möglichst einfach wird.

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
lg( 0,001x ) +4 lg( x )
= lg( 0,001 ) + lg( x ) +4 lg( x )
= lg( 10 -3 ) + lg( x ) +4 lg( x )
= -3 + lg( x ) +4 lg( x )
= 5 lg( x ) -3

1. Logarithmusgesetz rückwärts

Beispiel:

Vereinfache: lg( 2500000 ) + lg( 4 ) .

Lösung einblenden

lg( 2500000 ) + lg( 4 )

Jetzt wenden wir das Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts an:

= lg( 2500000 · 4 )

= lg( 10000000 )

= lg( 10 7 )

= 7

2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term lg( 1 x ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
lg( 1 x )
= lg( x - 1 2 )
= - 1 2 lg( x )
= - 1 2 lg( x )

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term lg( 20x ) + lg( 2 x 4 ) - lg( 40000 x 5 ) soweit wie möglich.

Lösung einblenden

lg( 20x ) + lg( 2 x 4 ) - lg( 40000 x 5 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= lg( 20 ) + lg( x ) + ( lg( 2 ) + lg( x 4 ) ) - ( lg( 40000 ) + lg( x 5 ) )

= lg( 20 ) + lg( x ) + lg( 2 ) + lg( x 4 ) - lg( 40000 ) - lg( x 5 )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= lg( 20 ) + lg( x ) + lg( 2 ) +4 lg( x ) - lg( 40000 ) -5 lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= lg( 20 ) + lg( x ) + lg( 2 ) +4 lg( x ) - lg( 40000 ) -5 lg( x )

= - lg( 40000 ) + lg( 20 ) + lg( 2 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= lg( 1 40000 · 20 · 2 )

= lg( 1 1000 )

= lg( 10 -3 )

= -3