Aufgabenbeispiele von Logarithmus

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 3 (9) .

Lösung einblenden

Wir suchen den Logarithmus von 9 zur Basis 3, also die Hochzahl mit der man 3 potenzieren muss, um auf 9 zu kommen.

Also was muss in das Kästchen, damit 3 = 9 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 3 (9) = 2, eben weil 32 = 9 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 10 ( 1 10.000.000 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 10.000.000 zur Basis 10, also die Hochzahl mit der man 10 potenzieren muss, um auf 1 10.000.000 zu kommen.

Also was muss in das Kästchen, damit 10 = 1 10.000.000 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 10-Potenz zu schreiben versuchen, also 10 = 1 10.000.000

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 10 ( 1 10.000.000 ) = -7, eben weil 10-7 = 1 10.000.000 gilt .

log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 9 ( 1 3 ) .

Lösung einblenden

Zuerst schreiben wir 1 3 um: 1 3 = 3 -1

Da wir nicht den Logarithmus zur Basis 3 sondern zur Basis 9 suchen und 9 gerade 3² ist (also 3 = 9 = 9 1 2 ), formen wir 3 -1 noch so um, dass sie 9 als Basis hat:

3 -1 = ( 9 1 2 ) -1 = 9 - 1 2

log 9 ( 1 3 ) = log 9 ( 3 -1 ) heißt, dass wir den Logarithmus von 3 -1 = 9 - 1 2 zur Basis 9 suchen, also die Hochzahl mit der man 9 potenzieren muss, um auf 3 -1 = 9 - 1 2 zu kommen.

Also was muss in das Kästchen, damit 9 = 3 -1 = 9 - 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 9 ( 1 3 ) = log 9 ( 3 -1 ) = log 9 ( 9 - 1 2 ) = - 1 2 , eben weil 9 - 1 2 = 1 3 gilt .

log im Interval bestimmen

Beispiel:

Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus log 5 (3) liegt.

Lösung einblenden

Wir suchen 5er-Potenzen in der Näher von 3, also eine die gerade noch kleiner und eine die schon größer als 3 ist.

Dabei kommt man auf 1 = 50 < 3 und auf 5 = 51 > 3.

Und da wir bei log 5 (3) ja das ☐ von 5 = 3 suchen, muss dieses ☐ irgendwo zwischen 0 und 1 liegen, wegen:
50 = 1 < 3 < 5 = 51

Es gilt somit: 0 < log 5 (3) < 1

1. Logarithmusgesetz einfach

Beispiel:

Vereinfache lg( 1000x ) - lg( x ) so, dass das Argument des Logarithmus möglichst einfach wird.

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
lg( 1000x ) - lg( x )
= lg( 1000 ) + lg( x ) - lg( x )
= lg( 10 3 ) + lg( x ) - lg( x )
= 3 + lg( x ) - lg( x )
= 3

1. Logarithmusgesetz rückwärts

Beispiel:

Vereinfache: lg( 200 ) + lg( 50 ) .

Lösung einblenden

lg( 200 ) + lg( 50 )

Jetzt wenden wir das Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts an:

= lg( 200 · 50 )

= lg( 10000 )

= lg( 10 4 )

= 4

2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term lg( 1 x 3 ) + lg( 1 x 3 ) +2 lg( 1 x 2 ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
lg( 1 x 3 ) + lg( 1 x 3 ) +2 lg( 1 x 2 )
= lg( x -3 ) + lg( x -3 ) +2 lg( x -2 )
= -3 lg( x ) -3 lg( x ) -4 lg( x )
= -10 lg( x )

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term lg( 1 80 x 3 ) + lg( 4 x 4 ) + lg( 20x ) soweit wie möglich.

Lösung einblenden

lg( 1 80 x 3 ) + lg( 4 x 4 ) + lg( 20x )

= lg( 1 80 x -3 ) + lg( 4 x 4 ) + lg( 20x )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= lg( 1 80 ) + lg( 1 x 3 ) + ( lg( 4 ) + lg( x 4 ) ) + ( lg( 20 ) + lg( x ) )

= lg( 1 80 ) + lg( 1 x 3 ) + lg( 4 ) + lg( x 4 ) + lg( 20 ) + lg( x )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= lg( 1 80 ) -3 lg( x ) + lg( 4 ) +4 lg( x ) + lg( 20 ) + lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= lg( 1 ) - lg( 80 ) -3 lg( x ) + lg( 4 ) +4 lg( x ) + lg( 20 ) + lg( x )

= 2 lg( x ) - lg( 80 ) + lg( 20 ) + lg( 4 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= 2 lg( x ) + lg( 1 80 · 20 · 4 )

= 2 lg( x ) + lg( 1 4 · 4 )

= 2 lg( x ) + lg( 1 )

= 2 lg( x )