Aufgabenbeispiele von Logarithmus

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 5 (5) .

Lösung einblenden

Wir suchen den Logarithmus von 5 zur Basis 5, also die Hochzahl mit der man 5 potenzieren muss, um auf 5 zu kommen.

Also was muss in das Kästchen, damit 5 = 5 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 5 (5) = 1, eben weil 51 = 5 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 2 ( 1 64 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 64 zur Basis 2, also die Hochzahl mit der man 2 potenzieren muss, um auf 1 64 zu kommen.

Also was muss in das Kästchen, damit 2 = 1 64 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 2-Potenz zu schreiben versuchen, also 2 = 1 64

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 2 ( 1 64 ) = -6, eben weil 2-6 = 1 64 gilt .

log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 4 ( 4 ) .

Lösung einblenden

Zuerst schreiben wir 4 um: 4 = 4 1 2

log 4 ( 4 ) = log 4 ( 4 1 2 ) heißt, dass wir den Logarithmus von 4 1 2 zur Basis 4 suchen, also die Hochzahl mit der man 4 potenzieren muss, um auf 4 1 2 zu kommen.

Also was muss in das Kästchen, damit 4 = 4 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 4 ( 4 ) = log 4 ( 4 1 2 ) = 1 2 , eben weil 4 1 2 = 4 gilt .

log im Interval bestimmen

Beispiel:

Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus log 4 (2) liegt.

Lösung einblenden

Wir suchen 4er-Potenzen in der Näher von 2, also eine die gerade noch kleiner und eine die schon größer als 2 ist.

Dabei kommt man auf 1 = 40 < 2 und auf 4 = 41 > 2.

Und da wir bei log 4 (2) ja das ☐ von 4 = 2 suchen, muss dieses ☐ irgendwo zwischen 0 und 1 liegen, wegen:
40 = 1 < 2 < 4 = 41

Es gilt somit: 0 < log 4 (2) < 1

1. Logarithmusgesetz einfach

Beispiel:

Vereinfache lg( 0.00001x ) +2 lg( x ) so, dass das Argument des Logarithmus möglichst einfach wird.

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
lg( 0.00001x ) +2 lg( x )
= lg( 0.00001 ) + lg( x ) +2 lg( x )
= lg( 10 -5 ) + lg( x ) +2 lg( x )
= -5 + lg( x ) +2 lg( x )
= 3 lg( x ) -5

1. Logarithmusgesetz rückwärts

Beispiel:

Vereinfache: lg( 40 ) + lg( 25 ) .

Lösung einblenden

lg( 40 ) + lg( 25 )

Jetzt wenden wir das Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts an:

= lg( 40 · 25 )

= lg( 1000 )

= lg( 10 3 )

= 3

2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term lg( x 4 ) + lg( 1 x ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
lg( x 4 ) + lg( 1 x )
= lg( x 4 ) + lg( x - 1 2 )
= 4 lg( x ) - 1 2 lg( x )
= 7 2 lg( x )

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term - lg( 1 5 x 3 ) + lg( 50 ) + lg( 1 250 x 2 ) soweit wie möglich.

Lösung einblenden

- lg( 1 5 x 3 ) + lg( 50 ) + lg( 1 250 x 2 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= -( lg( 1 5 ) + lg( x 3 ) ) + ( lg( 50 ) + lg( 1 ) ) + ( lg( 1 250 ) + lg( x 2 ) )

= - lg( 1 5 ) - lg( x 3 ) + lg( 50 ) + lg( 1 ) + lg( 1 250 ) + lg( x 2 )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= - lg( 1 5 ) -3 lg( x ) + lg( 50 ) +0 + lg( 1 250 ) +2 lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= - lg( 1 ) + lg( 5 ) -3 lg( x ) + lg( 50 ) +0 + lg( 1 ) - lg( 250 ) +2 lg( x )

= - lg( x ) - lg( 250 ) + lg( 50 ) + lg( 5 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= - lg( x ) + lg( 1 250 · 50 · 5 )

= - lg( x ) + lg( 1 5 · 5 )

= - lg( x ) + lg( 1 )

= - lg( x )