Aufgabenbeispiele von Logarithmus

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 14 (196) .

Lösung einblenden

Wir suchen den Logarithmus von 196 zur Basis 14, also die Hochzahl mit der man 14 potenzieren muss, um auf 196 zu kommen.

Also was muss in das Kästchen, damit 14 = 196 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 14 (196) = 2, eben weil 142 = 196 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 19 ( 19 3 ) .

Lösung einblenden

Wir suchen den Logarithmus von 19 3 zur Basis 19, also die Hochzahl mit der man 19 potenzieren muss, um auf 19 3 zu kommen.

Also was muss in das Kästchen, damit 19 = 19 3 gilt.

Wenn wir jetzt die 19 3 als 19 1 3 umschreiben, steht die Lösung praktisch schon da: 19 = 19 1 3

log 19 ( 19 3 ) = 1 3 , eben weil 19 1 3 = 19 3 gilt .

log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 25 ( 1 5 ) .

Lösung einblenden

Zuerst schreiben wir 1 5 um: 1 5 = 5 -1

Da wir nicht den Logarithmus zur Basis 5 sondern zur Basis 25 suchen und 25 gerade 5² ist (also 5 = 25 = 25 1 2 ), formen wir 5 -1 noch so um, dass sie 25 als Basis hat:

5 -1 = ( 25 1 2 ) -1 = 25 - 1 2

log 25 ( 1 5 ) = log 25 ( 5 -1 ) heißt, dass wir den Logarithmus von 5 -1 = 25 - 1 2 zur Basis 25 suchen, also die Hochzahl mit der man 25 potenzieren muss, um auf 5 -1 = 25 - 1 2 zu kommen.

Also was muss in das Kästchen, damit 25 = 5 -1 = 25 - 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 25 ( 1 5 ) = log 25 ( 5 -1 ) = log 25 ( 25 - 1 2 ) = - 1 2 , eben weil 25 - 1 2 = 1 5 gilt .

log im Interval bestimmen

Beispiel:

Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus log 5 (4) liegt.

Lösung einblenden

Wir suchen 5er-Potenzen in der Näher von 4, also eine die gerade noch kleiner und eine die schon größer als 4 ist.

Dabei kommt man auf 1 = 50 < 4 und auf 5 = 51 > 4.

Und da wir bei log 5 (4) ja das ☐ von 5 = 4 suchen, muss dieses ☐ irgendwo zwischen 0 und 1 liegen, wegen:
50 = 1 < 4 < 5 = 51

Es gilt somit: 0 < log 5 (4) < 1

1. Logarithmusgesetz einfach

Beispiel:

Vereinfache lg( 10x ) +4 lg( x ) so, dass das Argument des Logarithmus möglichst einfach wird.

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
lg( 10x ) +4 lg( x )
= lg( 10 ) + lg( x ) +4 lg( x )
= 1 + lg( x ) +4 lg( x )
= 5 lg( x ) +1

1. Logarithmusgesetz rückwärts

Beispiel:

Vereinfache: lg( 50 ) + lg( 20 ) .

Lösung einblenden

lg( 50 ) + lg( 20 )

Jetzt wenden wir das Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts an:

= lg( 50 · 20 )

= lg( 1000 )

= lg( 10 3 )

= 3

2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term 4 lg( x ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
4 lg( x )
= 4 lg( x 1 2 )
= 2 lg( x )
= 2 lg( x )

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term - lg( 625 x 5 ) + lg( 25 x 2 ) + lg( 25 x 2 ) soweit wie möglich.

Lösung einblenden

- lg( 625 x 5 ) + lg( 25 x 2 ) + lg( 25 x 2 )

= - lg( 625 x -5 ) + lg( 25 x 2 ) + lg( 25 x -2 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= -( lg( 625 ) + lg( 1 x 5 ) ) + ( lg( 25 ) + lg( x 2 ) ) + ( lg( 25 ) + lg( 1 x 2 ) )

= - lg( 625 ) - lg( 1 x 5 ) + lg( 25 ) + lg( x 2 ) + lg( 25 ) + lg( 1 x 2 )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= - lg( 625 ) +5 lg( x ) + lg( 25 ) +2 lg( x ) + lg( 25 ) -2 lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= - lg( 625 ) +5 lg( x ) + lg( 25 ) +2 lg( x ) + lg( 25 ) -2 lg( x )

= 5 lg( x ) - lg( 625 ) + lg( 25 ) + lg( 25 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= 5 lg( x ) + lg( 1 625 · 25 · 25 )

= 5 lg( x ) + lg( 1 25 · 25 )

= 5 lg( x ) + lg( 1 )

= 5 lg( x )