Aufgabenbeispiele von Termbestimmung

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Termbestimmung mit Punktproben

Beispiel:

Bestimme a und n so, dass die Punkte A(1| - 1 2 ) und B(2|-2 ) auf dem Graphen der Funktion f mit f(x)= a · x n liegen.

Lösung einblenden

Wir setzen einfach die beiden Punkte A(1| - 1 2 ) und B(2|-2 ) in den Funktionsterm f(x)= a · x n ein und erhalten so die beiden Gleichungen:

I: - 1 2 = a · 1 n
II: -2 = a · 2 n

Aus I ergibt sich ja sofort - 1 2 = a. Dies können wir gleich in II einsetzen:

II: -2 = - 1 2 2 n | ⋅ ( -2 )

4 = 2 n

Durch Ausprobieren mit ganzzahligen n erhält man so n=2

Der gesuchte Funktionsterm ist somit: f(x)= - 1 2 x 2

Termbestimmung mit Punktproben II

Beispiel:

Bestimme a und n so, dass die Punkte A( 1 2 | - 1 4 ) und B( 3 2 | - 9 4 ) auf dem Graphen der Funktion f mit f(x)= a · x n liegen.

Lösung einblenden

Wir setzen einfach die beiden Punkte A( 1 2 | - 1 4 ) und B( 3 2 | - 9 4 ) in den Funktionsterm f(x)= a · x n ein und erhalten so die beiden Gleichungen:

I: - 1 4 = a · ( 1 2 ) n
II: - 9 4 = a · ( 3 2 ) n

Jetzt lösen wir mal die beide Gleichungen nach a auf:

I: - 1 4 ( 1 2 ) n = a
II: - 9 4 ( 3 2 ) n = a

Da in beiden Gleichungen die Terme links =a sind, können wir diese gleichsetzen:

- 1 4 ( 1 2 ) n = - 9 4 ( 3 2 ) n | ⋅ ( 1 2 ) n ( 3 2 ) n

- 1 4 ( 3 2 ) n = - 9 4 ( 1 2 ) n | ⋅ 4

-1 ( 3 2 ) n = -9 ( 1 2 ) n

Jetzt muss man eben erkennen, dass ( 3 2 ) n = ( 3( 1 2 ) ) n = 3 n ( 1 2 ) n ist.

- 3 n · ( 1 2 ) n = -9 ( 1 2 ) n | : ( 1 2 ) n

- 3 n = -9 | :-1

3 n = 9

Durch Ausprobieren mit ganzzahligen n erhält man so n=2

n=2 eingesetzt in I:

I: - 1 4 = a · ( 1 2 ) 2

I: - 1 4 = 1 4 a | ⋅ 4

also a=-1

Der gesuchte Funktionsterm ist somit: f(x)= - x 2