Aufgabenbeispiele von Verschiebung / Streckung
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Verschiebung am Graph erkennen
Beispiel:
Im Schaubild sieht man den Graph von in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.
Man erkennt schnell, dass der rote Graph in y-Richtung verschoben wurde, und zwar um 3 nach oben. Der gesuchte Funktionsterm ist also g(x)=
Verschiebung am Graph erkennen II
Beispiel:
Im Schaubild sieht man den Graph von in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.
Hinweis: Die beiden Graphen sind deckungsgleich.
Man erkennt schnell, dass der rote Graph in x-Richtung verschoben wurde, und zwar um 4 nach rechts. Statt den Funktionswerten von x
werden also die von (x -
Somit erhält man für den gesuchten Funktionsterm g(x)= .
Verschiebung am Term erkennen
Beispiel:
Beschreibe, wie der Graph von g mit aus dem Graph von f mit entsteht.
Hinter dem Potenzterm steht noch eine -2. Das bedeutet, dass zu jedem Funktionswert noch -2 dazu addiert wird. Also wird der Graph von g um 2 nach unten, bzw. -2 nach oben verschoben.
Die -5 als Koeffizient vor der Potenz bewirkt, dass die Funktionswerte mit dem Faktor -5 multipliziert werden. Dadurch wird der Graph um -5 gestreckt. (das negative Vorzeichen von -5 ändert das Vorzeichen der Funktionswerte und bewirkt somit noch zusätzlich eine Spiegelung an der x-Achse.)
Term aus Verschiebung (Streck.) bestimmen
Beispiel:
Der Graph von f mit wird um 4 nach rechts verschoben und um 4 nach unten verschoben.
Bestimme den Funktionsterm g(x) des neuen Graphen.
Bei der Verschiebung um 4 nach rechts wird jedes 'x' durch (x
Bei der Verschiebung um 4 nach unten, bzw. -4 nach oben wird zu jedem Funktionswert noch -4 dazu addiert, also ein -4 an den Funktionsterm hinten angehängt.
Der gesuchte Funktionsterm g(x) ist somit:
