Aufgabenbeispiele von Verschiebung / Streckung
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Verschiebung am Graph erkennen
Beispiel:
Im Schaubild sieht man den Graph von in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.
Man erkennt schnell, dass der rote Graph in x-Richtung verschoben wurde, und zwar um 2 nach links, bzw. -2 nach rechts. Der gesuchte Funktionsterm ist also g(x)= =
Verschiebung am Graph erkennen II
Beispiel:
Im Schaubild sieht man den Graph von in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.
Hinweis: Die beiden Graphen sind deckungsgleich.
Man erkennt schnell, dass der rote Graph in y-Richtung verschoben wurde, und zwar um 2 nach unten, bzw. -2 nach oben.
Außerdem erkennt man eine Verschiebung um 2 nach links, bzw. -2 nach rechts, was bedeutet dass statt den Funktionswerten von x die von
(x -
Somit erhält man für den gesuchten Funktionsterm g(x)= .
Verschiebung am Term erkennen
Beispiel:
Beschreibe, wie der Graph von g mit aus dem Graph von f mit entsteht.
Hinter dem Potenzterm steht noch eine -3. Das bedeutet, dass zu jedem Funktionswert noch -3 dazu addiert wird. Also wird der Graph von g um 3 nach unten, bzw. -3 nach oben verschoben.
Die 3 als Koeffizient vor der Potenz bewirkt, dass die Funktionswerte mit dem Faktor 3 multipliziert werden. Dadurch wird der Graph um 3 gestreckt.
Term aus Verschiebung (Streck.) bestimmen
Beispiel:
Der Graph von f mit wird um den Faktor in y-Richtung gestreckt und an der x-Achse gespiegelt und um 5 nach oben verschoben.
Bestimme den Funktionsterm g(x) des neuen Graphen.
Bei der Verschiebung um 5 nach oben wird zu jedem Funktionswert noch 5 dazu addiert, also ein 5 an den Funktionsterm hinten angehängt.
Die Streckung um den Faktor in y-Richtung erreicht man durch den Koeffizienten vor der Potenz.
Die Spiegelung an der x-Achse bekommt man durch ein negatives Vorzeichen bei dem Koeffizienten vor der Potenz, also - .
Der gesuchte Funktionsterm g(x) ist somit: