Aufgabenbeispiele von nach x auflösen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x ( x -2 ) ( x +3 ) . Berechne alle Stellen für die gilt: f(x) = 0.

Lösung einblenden

Es gilt f(x) = 0, also x ( x -2 ) ( x +3 ) = 0.

x ( x -2 ) ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x -2 ) ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -2 = 0 | +2
x2 = 2

2. Fall:

x +3 = 0 | -3
x3 = -3

An den Stellen x1 = -3 , x2 = 0 und x3 = 2 gilt also f(x)= 0.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 4 +37 . Berechne alle Stellen für die gilt: f(x) = 5.

Lösung einblenden

Es gilt f(x) = 5, also -2 x 4 +37 = 5.

-2 x 4 +37 = 5 | -37
-2 x 4 = -32 |: ( -2 )
x 4 = 16 | 4
x1 = - 16 4 = -2
x2 = 16 4 = 2

An den Stellen x1 = -2 und x2 = 2 gilt also f(x)= 5.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 4 - x 2 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 4 - x 2 = 0
x 2 ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -1 |0), S2(0|0), S3( 1 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 2 +15x +15 und g(x)= 4 x 2 -3 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 2 +15x +15 = 4 x 2 -3 | -4 x 2 +3
-3 x 2 +15x +18 = 0 |:3

- x 2 +5x +6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -5 ± 5 2 -4 · ( -1 ) · 6 2( -1 )

x1,2 = -5 ± 25 +24 -2

x1,2 = -5 ± 49 -2

x1 = -5 + 49 -2 = -5 +7 -2 = 2 -2 = -1

x2 = -5 - 49 -2 = -5 -7 -2 = -12 -2 = 6

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -1 ) = 4 ( -1 ) 2 -3 = 1 S1( -1 | 1 )

g( 6 ) = 4 6 2 -3 = 141 S2( 6 | 141 )