Aufgabenbeispiele von nach x auflösen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -31 . Berechne alle Stellen für die gilt: f(x) = 5.

Lösung einblenden

Es gilt f(x) = 5, also x 2 -31 = 5.

x 2 -31 = 5 | +31
x 2 = 36 | 2
x1 = - 36 = -6
x2 = 36 = 6

An den Stellen x1 = -6 und x2 = 6 gilt also f(x)= 5.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= ( x -2 ) 4 -11 . Berechne alle Stellen für die gilt: f(x) = 5.

Lösung einblenden

Es gilt f(x) = 5, also ( x -2 ) 4 -11 = 5.

( x -2 ) 4 -11 = 5 | +11
( x -2 ) 4 = 16 | 4

1. Fall

x -2 = - 16 4 = -2
x -2 = -2 | +2
x1 = 0

2. Fall

x -2 = 16 4 = 2
x -2 = 2 | +2
x2 = 4

An den Stellen x1 = 0 und x2 = 4 gilt also f(x)= 5.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 5 -4 x 3 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 5 -4 x 3 = 0
x 3 ( x 2 -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -2 |0), S2(0|0), S3( 2 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 3 -4 x 2 +4x -125 und g(x)= -4 x 2 +4x .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 3 -4 x 2 +4x -125 = -4 x 2 +4x | +125 +4 x 2 -4x
x 3 = 125 | 3
x = 125 3 = 5

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 5 ) = -4 5 2 +45 = -80 S1( 5 | -80 )