Aufgabenbeispiele von Funktionsbegriff
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
y-Wert aus Schaubild ablesen
Beispiel:
Aus der Zeichnung kann man erkennen, dass an der Stelle x=2 der (in der Abblidung rechts rote) Punkt (2|f(2)) auf der Höhe y=-1.3 liegt.
Größenvergleich bei Potenzfunktionen
Beispiel:
Gegeben sind die Funktionen f mit f(x)= , g mit g(x)= , h mit h(x)= .
Sortiere die drei Funktionswerte -f(-0.6), -g(-0.6) und -h(-0.6), ohne sie wirklich auszurechnen.
Das Schaubild rechts zeigt jeweils die Graphen von f (in schwarz), g (in blau) und h (in rot).
Zuerst überlegen wir, welche der Funktionswerte positiv und welche negativ sind:
- -f(-0.6) = - < 0
- -g(-0.6) = - > 0
- -h(-0.6) = - < 0
Da -g(-0.6) der einzige positive Funktionswert ist, muss dieser also der größte sein.
Und weil die anderen beiden Werte negativ sind, schauen wir zunächst nur auf die Beträge:
Dabei gilt -f(-0.6) < -h(-0.6). Das sieht man zum einen am Schaubild rechts (f(x)=x2 in schwarz, g(x)=x3 in blau und
h(x)=x4 in rot),
aber auch direkt an den Zahlen:
0.64 =0.62 ⋅ 0.6 ⋅ 0.6, d.h. 0.64 < 0.62, also gilt - 0.64 > - 0.62.
Die richtige Reihenfolge ist also:
-f(-0.6)= -
< -h(-0.6)= -
< -g(-0.6)= -
.
x-Wert am Graph ablesen
Beispiel:
Da die Funktionswerte f(x) immer auf der y-Achse abgetragen werden, muss der gesuchte Punkt auf dem Graph 1.4 unter der x-Achse liegen. Alle Punkte mit dieser Eigenschaft sind durch die blaue Gerade im Schaubild veranschaulicht.
So erkennt man nun, dass z.B. an der Stelle x = -3 gerade ein (in der Abblidung rechts roter) Punkt auf dem Graph liegt, der als y-Wert ( und damit als Funktionswert f(x)) -1.4 hat.
Also ist beispielweise bei x = -3 solch eine Stelle mit f(-3) = -1.4.
Funktionswerte berechnen
Beispiel:
Gegeben ist die Funktion f mit f(x)= . Berechne den Funktionswert f(-2).
Wir setzen -2 einfach für x in f(x)= ein:
f(-2) =
=
=
=
=