Aufgabenbeispiele von vermischte Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Schnittpunkte berechnen

Beispiel:

Gegegben sind die Funktionen f und g mit f(x)= x 4 -16x und g(x)= - 64 x 2 . Bestimme die Schnittpunkte der Graphen.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

x 4 -16x = - 64 x 2 |⋅( x 2 )
x 4 · x 2 -16x · x 2 = - 64 x 2 · x 2
x 4 · x 2 -16 x · x 2 = -64
x 6 -16 x 3 = -64
x 6 -16 x 3 = -64 | +64
x 6 -16 x 3 +64 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 -16u +64 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +16 ± ( -16 ) 2 -4 · 1 · 64 21

u1,2 = +16 ± 256 -256 2

u1,2 = +16 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 16 2 = 8

Rücksubstitution:

u1: x 3 = 8

x 3 = 8 | 3
x1 = 8 3 = 2

u2: x 3 = 8

x 3 = 8 | 3
x2 = 8 3 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 2 }

Damit haben wir die Schnittstellen. Jetzt müssen wir die x-Werte nur noch in einen der beiden Funktionsterme einsetzen:

x1 = 2 : f( 2 )= - 64 2 2 = -16 Somit gilt: S1( 2 |-16)

Steigung gleichsetzen

Beispiel:

Bestimme alle Stellen, an denen die Tangenten an den Graph von f mit f(x)= 1 6 e 6x + 5 3 e 3x parallel zur Geraden y = 14x +5 sind.

Lösung einblenden

Für die Steigung der Geraden y = 14x +5 gilt m = 14

Die Steigungen der Tangenten an f können wir mit der Ableitungsfunktion f' berechnen.

f(x)= 1 6 e 6x + 5 3 e 3x

f'(x)= e 6x +5 e 3x

Also muss gelten:

e 6x +5 e 3x = 14 | -14
e 6x +5 e 3x -14 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 3x

Draus ergibt sich die quadratische Gleichung:

u 2 +5u -14 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -5 ± 5 2 -4 · 1 · ( -14 ) 21

u1,2 = -5 ± 25 +56 2

u1,2 = -5 ± 81 2

u1 = -5 + 81 2 = -5 +9 2 = 4 2 = 2

u2 = -5 - 81 2 = -5 -9 2 = -14 2 = -7

Rücksubstitution:

u1: e 3x = 2

e 3x = 2 |ln(⋅)
3x = ln( 2 ) |:3
x1 = 1 3 ln( 2 ) ≈ 0.231

u2: e 3x = -7

e 3x = -7

Diese Gleichung hat keine Lösung!

L={ 1 3 ln( 2 ) }

An diesen Stellen haben somit die Tangenten an f die Steigung 14 und sind somit parallel zur Geraden y = 14x +5 .

vermischte Gleichungen

Beispiel:

Löse die folgende Gleichung:

x 6 -2 x 4 -63 x 2 = 0

Lösung einblenden
x 6 -2 x 4 -63 x 2 = 0
x 2 ( x 4 -2 x 2 -63 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 4 -2 x 2 -63 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -63 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -63 ) 21

u1,2 = +2 ± 4 +252 2

u1,2 = +2 ± 256 2

u1 = 2 + 256 2 = 2 +16 2 = 18 2 = 9

u2 = 2 - 256 2 = 2 -16 2 = -14 2 = -7

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x2 = - 9 = -3
x3 = 9 = 3

u2: x 2 = -7

x 2 = -7 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -3 ; 0; 3 }

0 ist 2-fache Lösung!

Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

3x 3x -4 -3 = 0

Lösung einblenden

D=R\{ 4 3 }

Wir multiplizieren den Nenner 3x -4 weg!

3x 3x -4 -3 = 0 |⋅( 3x -4 )
3x 3x -4 · ( 3x -4 ) -3 · ( 3x -4 ) = 0
3x -9x +12 = 0
-6x +12 = 0
-6x +12 = 0 | -12
-6x = -12 |:(-6 )
x = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 2 }

Gleichungen mit Polynomdivision

Beispiel:

Löse die folgende Gleichung:

x 3 + x 2 +9x +9 = 0

Lösung einblenden

Die einzige und letzte Chance, die Lösungen von x 3 + x 2 +9x +9 = 0 zu bestimmen, ist mit Polynomdivision.
Das funktioniert aber nur, wenn wir eine ganzzahlige Lösung durch Ausprobieren finden.
Dazu testen wir alle Teiler (mit beiden Vorzeichen) des Absolutglieds 9 .

-1 ist eine Lösung, denn ( -1 ) 3 + ( -1 ) 2 +9( -1 ) +9 = 0.

Wir führen also eine Polynomdivison mit dem Divisor (x+1) durch.

( x 3 + x 2 +9x +9 ) : (x+1) = x 2 +0 +9
-( x 3 + x 2 )
0 +9x
-(0 0)
9x +9
-( 9x +9 )
0

es gilt also:

x 3 + x 2 +9x +9 = ( x 2 +0 +9 ) · ( x +1 )

( x 2 +0 +9 ) · ( x +1 ) = 0
( x 2 +9 ) ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 +9 = 0 | -9
x 2 = -9 | 2

Diese Gleichung hat keine (reele) Lösung!


2. Fall:

x +1 = 0 | -1
x1 = -1

L={ -1 }

Betragsgleichungen

Beispiel:

Löse die folgende Gleichung:

| -2x +8 | +6 = 2

Lösung einblenden
| -2x +8 | +6 = 2
6 + | -2x +8 | = 2 | -6
| -2x +8 | = -4

Da der Betrag links immer ≥ 0 sein muss, rechts aber eine negative Zahl steht, hat diese Gleichung keine Lösung!

L={}