Aufgabenbeispiele von vermischte Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Schnittpunkte berechnen

Beispiel:

Gegegben sind die Funktionen f und g mit f(x)= x 5 +6 x 3 und g(x)= 7x . Bestimme die Schnittpunkte der Graphen.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 5 +6 x 3 = 7x | -7x
x 5 +6 x 3 -7x = 0
x ( x 4 +6 x 2 -7 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 4 +6 x 2 -7 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +6u -7 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -6 ± 6 2 -4 · 1 · ( -7 ) 21

u1,2 = -6 ± 36 +28 2

u1,2 = -6 ± 64 2

u1 = -6 + 64 2 = -6 +8 2 = 2 2 = 1

u2 = -6 - 64 2 = -6 -8 2 = -14 2 = -7

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

u2: x 2 = -7

x 2 = -7 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -1 ; 0; 1 }

Damit haben wir die Schnittstellen. Jetzt müssen wir die x-Werte nur noch in einen der beiden Funktionsterme einsetzen:

x1 = -1 : f( -1 )= 7( -1 ) = -7 Somit gilt: S1( -1 |-7)

x2 = 0: f(0)= 70 = 0 Somit gilt: S2(0|0)

x3 = 1 : f( 1 )= 71 = 7 Somit gilt: S3( 1 |7)

Steigung gleichsetzen

Beispiel:

Bestimme alle Stellen, an denen die Tangenten an den Graph von f mit f(x)= 1 7 x 7 - 9 4 x 4 parallel zur Geraden y = -8x -4 sind.

Lösung einblenden

Für die Steigung der Geraden y = -8x -4 gilt m = -8

Die Steigungen der Tangenten an f können wir mit der Ableitungsfunktion f' berechnen.

f(x)= 1 7 x 7 - 9 4 x 4

f'(x)= x 6 -9 x 3

Also muss gelten:

x 6 -9 x 3 = -8 | +8
x 6 -9 x 3 +8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 -9u +8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +9 ± ( -9 ) 2 -4 · 1 · 8 21

u1,2 = +9 ± 81 -32 2

u1,2 = +9 ± 49 2

u1 = 9 + 49 2 = 9 +7 2 = 16 2 = 8

u2 = 9 - 49 2 = 9 -7 2 = 2 2 = 1

Rücksubstitution:

u1: x 3 = 8

x 3 = 8 | 3
x1 = 8 3 = 2

u2: x 3 = 1

x 3 = 1 | 3
x2 = 1 3 = 1

L={ 1 ; 2 }

An diesen Stellen haben somit die Tangenten an f die Steigung -8 und sind somit parallel zur Geraden y = -8x -4 .

vermischte Gleichungen

Beispiel:

Löse die folgende Gleichung:

e 3x +6 e 2x -7 e x = 0

Lösung einblenden
e 3x +6 e 2x -7 e x = 0
( e 2x +6 e x -7 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x +6 e x -7 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +6u -7 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -6 ± 6 2 -4 · 1 · ( -7 ) 21

u1,2 = -6 ± 36 +28 2

u1,2 = -6 ± 64 2

u1 = -6 + 64 2 = -6 +8 2 = 2 2 = 1

u2 = -6 - 64 2 = -6 -8 2 = -14 2 = -7

Rücksubstitution:

u1: e x = 1

e x = 1 |ln(⋅)
x1 = 0 ≈ 0

u2: e x = -7

e x = -7

Diese Gleichung hat keine Lösung!


2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

L={0}

Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

4x 3x +1 -1 = 0

Lösung einblenden

D=R\{ - 1 3 }

Wir multiplizieren den Nenner 3x +1 weg!

4x 3x +1 -1 = 0 |⋅( 3x +1 )
4x 3x +1 · ( 3x +1 ) -1 · ( 3x +1 ) = 0
4x -3x -1 = 0
x -1 = 0
x -1 = 0 | +1
x = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 }

Gleichungen mit Polynomdivision

Beispiel:

Löse die folgende Gleichung:

x 3 - x 2 +4x -4 = 0

Lösung einblenden

Die einzige und letzte Chance, die Lösungen von x 3 - x 2 +4x -4 = 0 zu bestimmen, ist mit Polynomdivision.
Das funktioniert aber nur, wenn wir eine ganzzahlige Lösung durch Ausprobieren finden.
Dazu testen wir alle Teiler (mit beiden Vorzeichen) des Absolutglieds -4 .

1 ist eine Lösung, denn 1 3 - 1 2 +41 -4 = 0.

Wir führen also eine Polynomdivison mit dem Divisor (x-1) durch.

( x 3 - x 2 +4x -4 ) : (x-1) = x 2 +0 +4
-( x 3 - x 2 )
0 +4x
-(0 0)
4x -4
-( 4x -4 )
0

es gilt also:

x 3 - x 2 +4x -4 = ( x 2 +0 +4 ) · ( x -1 )

( x 2 +0 +4 ) · ( x -1 ) = 0
( x 2 +4 ) ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 +4 = 0 | -4
x 2 = -4 | 2

Diese Gleichung hat keine (reele) Lösung!


2. Fall:

x -1 = 0 | +1
x1 = 1

L={ 1 }

Betragsgleichungen

Beispiel:

Löse die folgende Gleichung:

1 3 | 4x -16 | +7 = 3

Lösung einblenden
1 3 | 4x -16 | +7 = 3
7 + 1 3 | 4x -16 | = 3 | -7
1 3 | 4x -16 | = -4 |⋅3
| 4x -16 | = -12

Da der Betrag links immer ≥ 0 sein muss, rechts aber eine negative Zahl steht, hat diese Gleichung keine Lösung!

L={}