Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 cos( 3x - π) = 3

Lösung einblenden
-3 cos( 3x - π) = 3 |:-3
canvas
cos( 3x - π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - π = π

oder

3x - π = π-2π
3x - π = -π | + π
3x = 0 |:3
x = 0

L={0}

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 sin( 2x + π) = -1,95

Lösung einblenden
-3 sin( 2x + π) = -1,95 |:-3
canvas
sin( 2x + π) = 0,65 |sin-1(⋅)

Der WTR liefert nun als Wert 0.70758443672536

1. Fall:

2x + π = 0,708

oder

2x + π = 0,708 +2π | - π
2x = 0,708 + π
2x = 3,8496 |:2
x1 = 1,9248

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + π) = 0,65 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.65 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,708 = 2,434 liegen muss.

2. Fall:

2x + π = 2,434

oder

2x + π = 2,434 +2π | - π
2x = 2,434 + π
2x = 5,5756 |:2
x2 = 2,7878

L={ 1,9248 ; 2,7878 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-2 cos( x + π) · ( sin( x ) +1 ) = 0

Lösung einblenden
-2 cos( x + π) · ( sin( x ) +1 ) = 0
-2 cos( x + π) ( sin( x ) +1 ) = 0
-2 ( sin( x ) +1 ) · cos( x + π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
cos( x + π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + π = 1 2 π

oder

x + π = 1 2 π+2π
x + π = 5 2 π | - π
x2 = 3 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x + π = 3 2 π | - π
x3 = 1 2 π

L={ 1 2 π ; 3 2 π }

3 2 π ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( -3 sin( 3x - 1 2 π) -3 ) · ( cos( x ) -1 ) = 0

Lösung einblenden
( -3 sin( 3x - 1 2 π) -3 ) ( cos( x ) -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-3 sin( 3x - 1 2 π) -3 = 0 | +3
-3 sin( 3x - 1 2 π) = 3 |:-3
canvas
sin( 3x - 1 2 π) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - 1 2 π = 3 2 π

oder

3x - 1 2 π = 3 2 π-2π
3x - 1 2 π = - 1 2 π |⋅ 2
2( 3x - 1 2 π) = -π
6x - π = -π | + π
6x = 0 |:6
x1 = 0

Da -3 sin( 3x - 1 2 π) -3 die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x2 = 0 + 1⋅ 2 3 π = 2 3 π
x3 = 0 + 2⋅ 2 3 π = 4 3 π


2. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x4 = 0

L={0; 2 3 π ; 4 3 π }

0 ist 2-fache Lösung!

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 cos( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -1 = 0 | +1
2 cos( x ) = 1 |:2
canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x2 = 5 3 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 1 3 π ; π ; 5 3 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +3 cos( x ) -4 = 0

Lösung einblenden
( cos( x ) ) 2 +3 cos( x ) -4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

u1,2 = -3 ± 9 +16 2

u1,2 = -3 ± 25 2

u1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

u2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = -4

cos( x ) = -4

Diese Gleichung hat keine Lösung!

L={0}