Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
- cos( x + 1 2 π) +1 = 0

Lösung einblenden
- cos( x + 1 2 π) +1 = 0 | -1
- cos( x + 1 2 π) = -1 |:-1
canvas
cos( x + 1 2 π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x + 1 2 π = 0

oder

x + 1 2 π = 0+2π
x + 1 2 π = 2π |⋅ 2
2( x + 1 2 π) = 4π
2x + π = 4π | - π
2x = 3π |:2
x = 3 2 π

L={ 3 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 sin( x - π) +2 = 1,1

Lösung einblenden
-3 sin( x - π) +2 = 1,1 | -2
-3 sin( x - π) = -0,9 |:-3
canvas
sin( x - π) = 0,3 |sin-1(⋅)

Der WTR liefert nun als Wert 0.3046926540154

1. Fall:

x - π = 0,305 | + π
x1 = 0,305 + π
x1 = 3,4466

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - π) = 0,3 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.3 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,305 = 2,837 liegen muss.

2. Fall:

x - π = 2,837 | + π
x2 = 2,837 + π
x2 = 5,9786

L={ 3,4466 ; 5,9786 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( - sin( x + π) +1 ) · cos( x ) = 0

Lösung einblenden
( - sin( x + π) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

- sin( x + π) +1 = 0 | -1
- sin( x + π) = -1 |:-1
canvas
sin( x + π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x + π = 1 2 π

oder

x + π = 1 2 π+2π
x + π = 5 2 π | - π
x1 = 3 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; 3 2 π }

3 2 π ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2 3 π ):
3 cos( 3x + 1 2 π) · ( x 3 - x 2 ) = 0

Lösung einblenden
3 cos( 3x + 1 2 π) · ( x 3 - x 2 ) = 0
3 cos( 3x + 1 2 π) ( x 3 - x 2 ) = 0
3 ( x 3 - x 2 ) · cos( 3x + 1 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 - x 2 = 0
x 2 ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

2. Fall:

canvas
cos( 3x + 1 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + 1 2 π = 1 2 π |⋅ 2
2( 3x + 1 2 π) = π
6x + π = π | - π
6x = 0 |:6
x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x + 1 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x + 1 2 π = 3 2 π |⋅ 2
2( 3x + 1 2 π) = 3π
6x + π = 3π | - π
6x = 2π |:6
x4 = 1 3 π

L={0; 1 ; 1 3 π }

0 ist 3-fache Lösung!

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 3 2 cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 3 2 cos( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 sin( x ) -3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -3 = 0 | +3
2 sin( x ) = 3 |:2
sin( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 1 2 cos( x ) - 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 - 1 2 cos( x ) - 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - 1 2 u - 1 2 = 0 |⋅ 2
2( u 2 - 1 2 u - 1 2 ) = 0

2 u 2 - u -1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +1 ± ( -1 ) 2 -4 · 2 · ( -1 ) 22

u1,2 = +1 ± 1 +8 4

u1,2 = +1 ± 9 4

u1 = 1 + 9 4 = 1 +3 4 = 4 4 = 1

u2 = 1 - 9 4 = 1 -3 4 = -2 4 = -0,5

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = -0,5

canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x2 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x3 = 4 3 π

L={0; 2 3 π ; 4 3 π }