Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
cos( x + 3 2 π) +3 = 3

Lösung einblenden
cos( x + 3 2 π) +3 = 3 | -3 canvas
cos( x + 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + 3 2 π = 1 2 π

oder

x + 3 2 π = 1 2 π+2π
x + 3 2 π = 5 2 π |⋅ 2
2( x + 3 2 π) = 5π
2x +3π = 5π | -3π
2x = 2π |:2
x1 = π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x + 3 2 π = 3 2 π |⋅ 2
2( x + 3 2 π) = 3π
2x +3π = 3π | -3π
2x = 0 |:2
x2 = 0

L={0; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
3 cos( 2x - 1 2 π) -3 = -3,6

Lösung einblenden
3 cos( 2x - 1 2 π) -3 = -3,6 | +3
3 cos( 2x - 1 2 π) = -0,6 |:3
canvas
cos( 2x - 1 2 π) = -0,2 |cos-1(⋅)

Der WTR liefert nun als Wert 1.7721542475852

1. Fall:

2x - 1 2 π = 1,772 |⋅ 2
2( 2x - 1 2 π) = 3,544
4x - π = 3,544 | + π
4x = 3,544 + π
4x = 6,6856 |:4
x1 = 1,6714

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x - 1 2 π) = -0,2 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.2 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,772
bzw. bei - 1,772 +2π= 4,511 liegen muss.

2. Fall:

2x - 1 2 π = 4,511 |⋅ 2
2( 2x - 1 2 π) = 9,022
4x - π = 9,022 | + π
4x = 9,022 + π
4x = 12,1636 |:4
x2 = 3,0409

L={ 1,6714 ; 3,0409 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( x -2 ) · ( sin( x - 3 2 π) +1 ) = 0

Lösung einblenden
( x -2 ) ( sin( x - 3 2 π) +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -2 = 0 | +2
x1 = 2

2. Fall:

sin( x - 3 2 π) +1 = 0 | -1 canvas
sin( x - 3 2 π) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x - 3 2 π = 3 2 π

oder

x - 3 2 π = 3 2 π-2π
x - 3 2 π = - 1 2 π |⋅ 2
2( x - 3 2 π) = -π
2x -3π = -π | +3π
2x = 2π |:2
x2 = π

L={ 2 ; π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 + cos( x ) = 0
( cos( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) +1 = 0 | -1 canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; π ; 3 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 + sin( x ) = 0
( sin( x ) +1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 3 2 cos( x ) + 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 - 3 2 cos( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 - 3 2 u + 1 2 ) = 0

2 u 2 -3u +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +3 ± ( -3 ) 2 -4 · 2 · 1 22

u1,2 = +3 ± 9 -8 4

u1,2 = +3 ± 1 4

u1 = 3 + 1 4 = 3 +1 4 = 4 4 = 1

u2 = 3 - 1 4 = 3 -1 4 = 2 4 = 0,5

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = 0,5

canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x2 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x3 = 5 3 π

L={0; 1 3 π ; 5 3 π }