Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
3 sin( 2x - 1 2 π) -1 = -1

Lösung einblenden
3 sin( 2x - 1 2 π) -1 = -1 | +1
3 sin( 2x - 1 2 π) = 0 |:3
canvas
sin( 2x - 1 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x - 1 2 π = 0 |⋅ 2
2( 2x - 1 2 π) = 0
4x - π = 0 | + π
4x = π |:4
x1 = 1 4 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x - 1 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x - 1 2 π = π |⋅ 2
2( 2x - 1 2 π) = 2π
4x - π = 2π | + π
4x = 3π |:4
x2 = 3 4 π

L={ 1 4 π ; 3 4 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 cos( 3x - π) +3 = 3,8

Lösung einblenden
-2 cos( 3x - π) +3 = 3,8 | -3
-2 cos( 3x - π) = 0,8 |:-2
canvas
cos( 3x - π) = -0,4 |cos-1(⋅)

Der WTR liefert nun als Wert 1.9823131728624

1. Fall:

3x - π = 1,982 | + π
3x = 1,982 + π
3x = 5,1236 |:3
x1 = 1,7079

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - π) = -0,4 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.4 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,982
bzw. bei - 1,982 +2π= 4,301 liegen muss.

2. Fall:

3x - π = 4,301

oder

3x - π = 4,301 -2π | + π
3x = 4,301 - π
3x = 1,1594 |:3
x2 = 0,3865

L={ 0,3865 ; 1,7079 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 -1 = 0

Lösung einblenden
( sin( x ) ) 4 -1 = 0 | +1
( sin( x ) ) 4 = 1 | 4

1. Fall

sin( x ) = - 1 4 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall

sin( x ) = 1 4 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

L={ 1 2 π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-2 cos( 3x - π) · ( cos( x ) +1 ) = 0

Lösung einblenden
-2 cos( 3x - π) · ( cos( x ) +1 ) = 0
-2 cos( 3x - π) ( cos( x ) +1 ) = 0
-2 ( cos( x ) +1 ) · cos( 3x - π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) +1 = 0 | -1 canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

2. Fall:

canvas
cos( 3x - π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - π = 1 2 π | + π
3x = 3 2 π |:3
x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x - π = 3 2 π

oder

3x - π = 3 2 π-2π
3x - π = - 1 2 π | + π
3x = 1 2 π |:3
x3 = 1 6 π

Da cos( 3x - π) die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x4 = 1 2 π + 1⋅ 2 3 π = 7 6 π , x5 = 1 6 π + 1⋅ 2 3 π = 5 6 π
x6 = 1 2 π + 2⋅ 2 3 π = 11 6 π , x7 = 1 6 π + 2⋅ 2 3 π = 3 2 π

L={ 1 6 π ; 1 2 π ; 5 6 π ; π ; 7 6 π ; 3 2 π ; 11 6 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + 1 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 + 1 2 sin( x ) = 0
1 2 ( 2 sin( x ) +1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) +1 = 0 | -1
2 sin( x ) = -1 |:2
canvas
sin( x ) = -0,5 |sin-1(⋅)

Der WTR liefert nun als Wert -0.5235987755983

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 11 6 π

1. Fall:

x1 = 11 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 11 6 π =-2.618 bzw. bei -2.618+2π= 7 6 π liegen muss.

2. Fall:

x2 = 7 6 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; π ; 7 6 π ; 11 6 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 -5 cos( x ) +4 = 0

Lösung einblenden
( cos( x ) ) 2 -5 cos( x ) +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -5u +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

u1,2 = +5 ± 25 -16 2

u1,2 = +5 ± 9 2

u1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

u2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Rücksubstitution:

u1: cos( x ) = 4

cos( x ) = 4

Diese Gleichung hat keine Lösung!

u2: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

L={0}