Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
sin( 2x - π) -2 = -1

Lösung einblenden
sin( 2x - π) -2 = -1 | +2 canvas
sin( 2x - π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

2x - π = 1 2 π | + π
2x = 3 2 π |:2
x = 3 4 π

L={ 3 4 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
2 cos( 2x - π) -1 = 0,1

Lösung einblenden
2 cos( 2x - π) -1 = 0,1 | +1
2 cos( 2x - π) = 1,1 |:2
canvas
cos( 2x - π) = 0,55 |cos-1(⋅)

Der WTR liefert nun als Wert 0.98843208892615

1. Fall:

2x - π = 0,988 | + π
2x = 0,988 + π
2x = 4,1296 |:2
x1 = 2,0648

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x - π) = 0,55 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.55 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,988
bzw. bei - 0,988 +2π= 5,295 liegen muss.

2. Fall:

2x - π = 5,295

oder

2x - π = 5,295 -2π | + π
2x = 5,295 - π
2x = 2,1534 |:2
x2 = 1,0767

L={ 1,0767 ; 2,0648 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
3 sin( x - π) · cos( x ) = 0

Lösung einblenden
3 sin( x - π) · cos( x ) = 0
3 sin( x - π) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
sin( x - π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - π = 0 | + π
x1 = π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x - π = π

oder

x - π = π-2π
x - π = -π | + π
x2 = 0

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={0; 1 2 π ; π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 +3 sin( x ) -4 = 0

Lösung einblenden
( sin( x ) ) 2 +3 sin( x ) -4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

u1,2 = -3 ± 9 +16 2

u1,2 = -3 ± 25 2

u1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

u2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = -4

sin( x ) = -4

Diese Gleichung hat keine Lösung!

L={ 1 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 + sin( x ) = 0
( sin( x ) +1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + sin( x ) -2 = 0

Lösung einblenden
( sin( x ) ) 2 + sin( x ) -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + u -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

u1,2 = -1 ± 1 +8 2

u1,2 = -1 ± 9 2

u1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

u2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = -2

sin( x ) = -2

Diese Gleichung hat keine Lösung!

L={ 1 2 π }