Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsame Punkte mit der x-Achse: N1(-2|0) und N2(-4|0)
- Schnittpunkt mit der y-Achse: Sy(0|8)
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Um den y-Achsenabschnitt Sy(0|8) zu überprüfen, setzen wir jetzt einfach x=0 in unseren bisherigen Term ein:
f(0) = =
Da also auch der y-Achsenabschnit passt, haben wir nun einen fertigen Funktionsterm .
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
= | | | ||
x1 | = |
2. Fall:
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
x2,3 =
x2,3 =
x2,3 =
x2 =
x3 =
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Auch der ausgeklammerte (oder wegdividierte) Faktor 3 darf natürlich nicht vergessen werden:
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Ein Getränk wird aus dem Kühlschrank genommen und erwärmt sich. Die Temperatur des Getränks zur Zeit t kann für t ≥ 0 durch die Funktion f mit
- Welche Temperatur hat das Getränk langfristig?
- Wann hat das Getränk die Temperatur von 22 erreicht?
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)=
45 - 37 e - 0,7 t 45 + 0 Das langfristige Verhalten der Funktionswerte geht also gegen
45 - Erster t-Wert bei y = 22
Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=22 annimmt.
Dazu setzen wir die Funktion einfach = 22 und lösen nach t auf:
45 - 37 e - 0,7 t = 22 - 37 e - 0,7 t + 45 = 22 | - 45 - 37 e - 0,7 t = - 23 |: - 37 e - 0,7 t = 23 37 |ln(⋅) - 0,7 t = ln ( 23 37 ) |: - 0,7 t = - 1 0,7 ln ( 23 37 ) ≈ 0.6792 Der erste Zeitpunkt an dem die die Funktion den Wert 22 annimmt, ist also nach 0.68 min.
Graph-Term-Zuordn BF + Transf.
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
j(x)=
k(x)=
Zu Graph Nr. 1:
Der Graph vonDer Graph Nr. 1 gehört also zur Funktion j(x) =
Zu Graph Nr. 2:
Der Graph vonAm Graph Nr. 2 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch zusätzlich um 1 in y-Richtung verschoben wurden.
Der Graph Nr. 2 gehört also zur Funktion i(x) =
Zu Graph Nr. 3:
Den Graph vonDer Graph Nr. 3 gehört also zur Funktion g(x) =
Zu Graph Nr. 4:
Der Graph vonDer Graph Nr. 4 gehört also zur Funktion h(x) =
Graph-Term-Zuordnung 2 BF
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
j(x)=
k(x)=
Zu Graph Nr. 1:
Der Graph vonDer Graph Nr. 1 gehört also zur Funktion g(x) =
Zu Graph Nr. 2:
Den Graph vonDer Graph Nr. 2 gehört also zur Funktion j(x) =
Zu Graph Nr. 3:
Den Graph vonDer Graph Nr. 3 gehört also zur Funktion i(x) =
Zu Graph Nr. 4:
Den Graph vonDer Graph Nr. 4 gehört also zur Funktion k(x) =
Graph-Term-Zuordnung BF
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
Zu Graph Nr. 1:
Der Graph vonDer Graph Nr. 1 gehört also zur Funktion h(x) =
Zu Graph Nr. 2:
Der Graph vonDer Graph Nr. 2 gehört also zur Funktion g(x) =
Zu Graph Nr. 3:
Der Graph vonDer Graph Nr. 3 gehört also zur Funktion f(x) =
Zu Graph Nr. 4:
Der Graph vonDer Graph Nr. 4 gehört also zur Funktion i(x) =
Graph-Term-Zuordn LF + Transf.
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
j(x)=
k(x)=
Zu Graph Nr. 1:
Der Graph vonAm Graph Nr. 1 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch zusätzlich um 1 in y-Richtung verschoben wurden.
Der Graph Nr. 1 gehört also zur Funktion f(x) =
Zu Graph Nr. 2:
Den Graph vonDer Graph Nr. 2 gehört also zur Funktion i(x) =
Zu Graph Nr. 3:
Der Graph vonAm Graph Nr. 3 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch zusätzlich um 1 in y-Richtung verschoben wurden.
Der Graph Nr. 3 gehört also zur Funktion j(x) =
Zu Graph Nr. 4:
Der Graph vonDer Graph Nr. 4 gehört also zur Funktion k(x) =
Graph-Term-Zuordnung 2 LF
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
j(x)=
k(x)=
Zu Graph Nr. 1:
Der Graph vonDer Graph Nr. 1 gehört also zur Funktion h(x) =
Zu Graph Nr. 2:
Der Graph vonDer Graph Nr. 2 gehört also zur Funktion g(x) =
Zu Graph Nr. 3:
Den Graph vonDer Graph Nr. 3 gehört also zur Funktion i(x) =
Zu Graph Nr. 4:
Der Graph vonDer Graph Nr. 4 gehört also zur Funktion j(x) =
Graph-Term-Zuordnung LF
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
Zu Graph Nr. 1:
Der Graph vonDer Graph Nr. 1 gehört also zur Funktion f(x) =
Zu Graph Nr. 2:
Den Graph vonDer Graph Nr. 2 gehört also zur Funktion i(x) =
Zu Graph Nr. 3:
Den Graph vonDer Graph Nr. 3 gehört also zur Funktion g(x) =
Zu Graph Nr. 4:
Der Graph vonDer Graph Nr. 4 gehört also zur Funktion h(x) =
Verschiebung Integral allg.
Beispiel:
Es gilt
Bestimme a, b und I.
Der Graph von f(x
Somit gilt a = -6 und b = -3.
Das
Parameter für Symmetrie finden
Beispiel:
Für welches a liegt beim Graph der Funktion fa mit
Gib die dann vorliegende Symmetrie an.
Man erkennt schnell, das keine Symmetrie zum Koordinatenssystem vorliegt, wenn nicht mindestens einer der Summanden von
Durch scharfes Hinsehen könnte man a = 1 erkennen. Man kann aber auch einfach bei jedem Summanden den Koeffizient anschauen und dann a so wählen, dass der Koeffizient = 0 wird:
-
( a - 3 ) x 3 ( 3 - 3 ) · x 3 + ( - 3 + 1 ) · x 2 - 2 x + ( 3 - 1 ) · 1 - 2 x 2 - 2 x + 2 -
( - a + 1 ) x 2 ( 1 - 3 ) · x 3 + ( - 1 + 1 ) · x 2 - 2 x + ( 1 - 1 ) · 1 - 2 x 3 - 2 x -
- 2 x -
a - 1 ( 1 - 3 ) · x 3 + ( - 1 + 1 ) · x 2 - 2 x + ( 1 - 1 ) · 1 - 2 x 3 - 2 x
Für a = 1 hat f1(x) =
Schnittpkt-Anzahl in Abh. von Parameter
Beispiel:
Die Gerade y = m⋅x schneidet den Graph der Funktion f mit
Bestimme diese Werte von m.
An der Abbildung kann man erkennen, dass die Geraden, die den Graph von f berühren, der spannende Grenzfall sind.
Da ja y = m⋅x für jedes m immer durch den Ursprung O(0|0) verläuft, suchen wir also eine Tangente (von außen) an den Graphen von f durch den Ursprung:
Zuerst wird die Ableitung von f berechnet:
Wir kennen den Berührpunkt, in dem die gesuchte Tangente durch P(0|0) an das Schaubild von f angelegt wird, nicht. Deswegen nennen wir den x-Wert u. Der Funktionswert ist dann f(u), da der Berührpunkt ja auf dem Schaubild von f liegt. Außerdem muss die Ableitung in u ja gerade die Tangentensteigung sein, da B(u|f(u)) der Berührpunkt ist.
Wir können also P(0|0) als (x|y), den Berührpunkt B(u|f(u)) und m=f'(u)=
y=f´(u) ⋅(x-u)+f(u)
einsetzen:
0 =
Die Lösung der Gleichung:
|
= | |⋅ 8 | |
|
= | ||
|
= | ||
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
= | |
|
|
u1 | = |
2. Fall:
|
= | |
|
|
u2 | = |
|
L={
Um die Steigung der Tangente zu erhalten, setzen wir den gefundenen Wert x =
=
=
Man kann jetzt an der Abbildung gut erkennen, für m =
Wird die Gerade noch steiler als bei m =
Wird die Geraden weniger steil oder sogar positiv, also für also für alle
m <
Die richtige Lösung wäre hier also: m >
Ableitungen am Graph finden
Beispiel:
Gegeben ist eine Funktion f. Eine der 4 Abbildungen unten zeigt den Graph von f, eine andere zeigt den Graph der Ableitungsfunktion f'. Eine weitere Abbildung zeigt den Graph einer Stammfunktion F (von f). Die verbleibende vierte Abbildung zeigt den Graph einer ganz anderen Funktion g. Ordne die Graphen den Funktionen f, f', F und G zu
Als Vorgehensweise empfiehlt es sich, die markanten Punkte in Bezug auf die Ableitung, also Punkte mit waagrechter Tangente wie z.B. Hoch- und Tiefpunkte, bei den einzelnen Graphen zu betrachten.
Zu Graph Nr. 1:
Beim Graph Nr. 1 können wir bei x = 1.5 Punkte mit waagrechter Tangente erkennen.
Zu Graph Nr. 2:
Beim Graph Nr. 2 können wir bei x = 0.6 und bei x = 2.4 Punkte mit waagrechter Tangente erkennen.
Da ja genau an diesen Stellen der Graph 1 seine Nullstellen hat, könnte der Graph 1 die Ableitungsfunktion der Funktion vom Graph 2 zeigen.
Zu Graph Nr. 3:
Beim Graph Nr. 3 können wir bei x = 0 und bei x = 2.3 Punkte mit waagrechter Tangente erkennen.
Zu Graph Nr. 4:
Beim Graph Nr. 4 können wir bei x = 0, x = 1.5 und bei x = 3 Punkte mit waagrechter Tangente erkennen.
Da ja genau an diesen Stellen der Graph 2 seine Nullstellen hat, könnte der Graph 2 die Ableitungsfunktion der Funktion vom Graph 4 zeigen.
Wir fassen also zusammen:
- Der Graph 1 zeigt die Ableitung vom Graph 2
- Der Graph 2 zeigt die Ableitung vom Graph 4
- Der Graph 3 scheint zu einer ganz anderen Funktion zu gehören.
Somit gilt:
Der Graph 1 gehört zur Funktion f '(x).
Der Graph 2 gehört zur Funktion f(x).
Der Graph 3 gehört zur Funktion g(x).
Der Graph 4 gehört zur Funktion F(x).