Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsamer Punkt mit der x-Achse: N(-1|0)
- einen Punkt mit waagrechter Tangente bei x = 0
- Verhalten für x → -∞: f(x) → -∞
- Verhalten für x → ∞: f(x) → -∞
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Der Punkt mit waagrechter Tangente bei x = 0 erhalten wir am einfachsten mit einer doppelten Nullstelle, weil eine doppelte Nullstelle ja immer nur die x-Achse berührt, ohne sie zu überschreiten. Dadurch liegt an einer doppelten Nullstelle stets ein Extrempunkt, also ein Punkt mit waagrechter Tangente vor.
Als neuen Term erhalten wir somit
Jetzt betrachten wir das Verhalten für x → ± ∞ :
Da sowohl für x → -∞ wie auch für x → +∞ : f(x) → -∞ gilt, muss unser gesuchter Term einen geraden Grad haben.
Unser bisheriger Term
=
hat aber einen ungeraden Grad. Deswegen könnten wir ihn beispielsweise
noch mit x multiplizieren, so dass er dann einen geraden Grad bekommt:
=
.
Es stimmt nun aber das Verhalten für x → ±∞ noch nicht, deswegen müssen wir den Term mit -1 multiplizieren.
Unser Term = erfüllt nun alle geforderten Eigenschaften.
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
= | | | ||
x1 | = |
2. Fall:
|
= |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
u1,2 =
u1,2 =
u1 =
u2 =
Rücksubstitution:
u1:
|
= | |
|
Diese Gleichung hat keine (reele) Lösung!
u2:
|
= | |
|
|
x2 | = |
|
=
|
x3 | = |
|
=
|
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Wenn wir den substituierten Term
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Die momentane Wachstumsrate der Höhe eines Baums kann für t ≥ 0 näherungsweise durch die Funktion f mit
Zu Beginn ist der Baum 3 Dezimeter hoch.
- Bestimme die maximale Wachstumsgeschwindigkeit des Baums.
- Wie groß ist die Wachstumsgeschwindigkeit auf lange Sicht?
- y-Wert des Maximums (HP)
Gesucht ist der y-Wert des Hochpunkt. Wir berechnen also die Extremstellen von f:
Detail-Rechnung für den Hochpunkt (
|11.04) einblenden10 Randwertuntersuchung
Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.
Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f(0) =
=3 · 0 · e - 0,1 ⋅ 0 0 . Am rechten Rand müssen wir das Verhalten für t → ∞ betrachten: Für t → ∞ ⇒ f(t) →0 .Weil die Werte an den Rändern kleiner als am Hochpunkt sind, ist das lokale Maximum also ein globales Maximum von f.
11.04 ist also der größte Wert der Funktion.
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)=
→3 t · e - 0,1 t 3 ∞ · 0 Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen
0 als der erste Faktor gegen und setzt sich deswegen durch∞ Das langfristige Verhalten der Funktionswerte geht also gegen
0 .
Graph-Term-Zuordn BF + Transf.
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
j(x)=
k(x)=
Zu Graph Nr. 1:
Der Graph vonDer Graph Nr. 1 gehört also zur Funktion j(x) =
Zu Graph Nr. 2:

Der Graph Nr. 2 gehört also zur Funktion i(x) =
Zu Graph Nr. 3:

Am Graph Nr. 3 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch zusätzlich um 1 in y-Richtung verschoben wurden.
Der Graph Nr. 3 gehört also zur Funktion k(x) =
Zu Graph Nr. 4:
Den Graph vonDer Graph Nr. 4 gehört also zur Funktion g(x) =
Graph-Term-Zuordnung 2 BF
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
j(x)=
k(x)=
Zu Graph Nr. 1:
Der Graph vonDer Graph Nr. 1 gehört also zur Funktion h(x) =
Zu Graph Nr. 2:

Der Graph Nr. 2 gehört also zur Funktion j(x) =
Zu Graph Nr. 3:
Den Graph vonDer Graph Nr. 3 gehört also zur Funktion i(x) =
Zu Graph Nr. 4:
Der Graph vonDer Graph Nr. 4 gehört also zur Funktion f(x) =
Graph-Term-Zuordnung BF
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
Zu Graph Nr. 1:
Der Graph vonDer Graph Nr. 1 gehört also zur Funktion i(x) =
Zu Graph Nr. 2:
Der Graph vonDer Graph Nr. 2 gehört also zur Funktion f(x) =
Zu Graph Nr. 3:
Den Graph vonDer Graph Nr. 3 gehört also zur Funktion h(x) =
Zu Graph Nr. 4:

Der Graph Nr. 4 gehört also zur Funktion g(x) =
Graph-Term-Zuordn LF + Transf.
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
j(x)=
k(x)=
Zu Graph Nr. 1:
Den Graph vonDer Graph Nr. 1 gehört also zur Funktion f(x) =
Zu Graph Nr. 2:
Den Graph vonAm Graph Nr. 2 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.
Der Graph Nr. 2 gehört also zur Funktion g(x) =
Zu Graph Nr. 3:

Am Graph Nr. 3 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.
Der Graph Nr. 3 gehört also zur Funktion k(x) =
Zu Graph Nr. 4:

Der Graph Nr. 4 gehört also zur Funktion i(x) =
Graph-Term-Zuordnung 2 LF
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
j(x)=
k(x)=
Zu Graph Nr. 1:
Der Graph vonDer Graph Nr. 1 gehört also zur Funktion i(x) =
Zu Graph Nr. 2:
Der Graph vonDer Graph Nr. 2 gehört also zur Funktion k(x) =
Zu Graph Nr. 3:
Den Graph vonDer Graph Nr. 3 gehört also zur Funktion g(x) =
Zu Graph Nr. 4:

Der Graph Nr. 4 gehört also zur Funktion h(x) =
Graph-Term-Zuordnung LF
Beispiel:
Ordne die Funktionen den Graphen zu.
f(x)=
g(x)=
h(x)=
i(x)=
Zu Graph Nr. 1:

Der Graph Nr. 1 gehört also zur Funktion i(x) =
Zu Graph Nr. 2:
Den Graph vonDer Graph Nr. 2 gehört also zur Funktion g(x) =
Zu Graph Nr. 3:
Den Graph vonDer Graph Nr. 3 gehört also zur Funktion f(x) =
Zu Graph Nr. 4:
Der Graph vonDer Graph Nr. 4 gehört also zur Funktion h(x) =
Verschiebung Integral allg.
Beispiel:
Es gilt
Bestimme a, b und I.
Der Graph von f(x
Somit gilt a = 1 und b = 2.
Wegen der Linearität des Integrals gilt
Somit gilt
Parameter für Symmetrie finden
Beispiel:
Für welches a liegt beim Graph der Funktion fa mit
Gib die dann vorliegende Symmetrie an.
Man erkennt schnell, das keine Symmetrie zum Koordinatenssystem vorliegt, wenn nicht mindestens einer der Summanden von
Durch scharfes Hinsehen könnte man a = -2 erkennen. Man kann aber auch einfach bei jedem Summanden den Koeffizient anschauen und dann a so wählen, dass der Koeffizient = 0 wird:
-
( a + 3 ) x 2 ( - 3 + 3 ) · x 2 + ( - 3 + 2 ) · x - 3 - x - 3 -
( a + 2 ) x ( - 2 + 3 ) · x 2 + ( - 2 + 2 ) · x - 3 x 2 - 3 -
- 3
Für a = -2 hat f-2(x) =
Schnittpkt-Anzahl in Abh. von Parameter
Beispiel:
Die Gerade y = m⋅x schneidet den Graph der Funktion f mit
Bestimme diese Werte von m.
An der Abbildung kann man erkennen, dass die Geraden, die den Graph von f berühren, der spannende Grenzfall sind.
Da ja y = m⋅x für jedes m immer durch den Ursprung O(0|0) verläuft, suchen wir also eine Tangente (von außen) an den Graphen von f durch den Ursprung:
Zuerst wird die Ableitung von f berechnet:
Wir kennen den Berührpunkt, in dem die gesuchte Tangente durch P(0|0) an das Schaubild von f angelegt wird, nicht. Deswegen nennen wir den x-Wert u. Der Funktionswert ist dann f(u), da der Berührpunkt ja auf dem Schaubild von f liegt. Außerdem muss die Ableitung in u ja gerade die Tangentensteigung sein, da B(u|f(u)) der Berührpunkt ist.
Wir können also P(0|0) als (x|y), den Berührpunkt B(u|f(u)) und m=f'(u)=
y=f´(u) ⋅(x-u)+f(u)
einsetzen:
0 =
Die Lösung der Gleichung:
|
= | ||
|
= | |
|
|
|
= | |⋅
|
|
|
= | |
|
|
u1 | = |
|
=
|
u2 | = |
|
=
|
L={
Um die Steigung der Tangente zu erhalten, setzen wir den gefundenen Wert x =
=
=
Um die Steigung der Tangente zu erhalten, setzen wir den gefundenen Wert x =
=
=
Man kann jetzt an der Abbildung gut erkennen, für m =
Wird die Gerade steiler, also für m >
Wird die Geraden weniger steil, also für also für
Die richtige Lösung wäre hier also: m =
Ableitungen am Graph finden
Beispiel:
Gegeben ist eine Funktion f. Eine der 4 Abbildungen unten zeigt den Graph von f, eine andere zeigt den Graph der Ableitungsfunktion f'. Eine weitere Abbildung zeigt den Graph einer Stammfunktion F (von f). Die verbleibende vierte Abbildung zeigt den Graph einer ganz anderen Funktion g. Ordne die Graphen den Funktionen f, f', F und G zu
Als Vorgehensweise empfiehlt es sich, die markanten Punkte in Bezug auf die Ableitung, also Punkte mit waagrechter Tangente wie z.B. Hoch- und Tiefpunkte, bei den einzelnen Graphen zu betrachten.
Zu Graph Nr. 1:
Beim Graph Nr. 1 können wir bei x = 1.3 und bei x = 4 Punkte mit waagrechter Tangente erkennen.
Zu Graph Nr. 2:
Beim Graph Nr. 2 können wir keine Punkte mit waagrechter Tangente finden.
Zu Graph Nr. 3:
Beim Graph Nr. 3 können wir bei x = 0 und bei x = 2.7 Punkte mit waagrechter Tangente erkennen.
Da ja genau an diesen Stellen der Graph 4 seine Nullstellen hat, könnte der Graph 4 die Ableitungsfunktion der Funktion vom Graph 3 zeigen.
Zu Graph Nr. 4:
Beim Graph Nr. 4 können wir bei x = 1.3 Punkte mit waagrechter Tangente erkennen.
Da ja genau an diesen Stellen der Graph 2 seine Nullstellen hat, könnte der Graph 2 die Ableitungsfunktion der Funktion vom Graph 4 zeigen.
Wir fassen also zusammen:
- Der Graph 4 zeigt die Ableitung vom Graph 3
- Der Graph 2 zeigt die Ableitung vom Graph 4
- Der Graph 1 scheint zu einer ganz anderen Funktion zu gehören.
Somit gilt:
Der Graph 1 gehört zur Funktion g(x).
Der Graph 2 gehört zur Funktion f '(x).
Der Graph 3 gehört zur Funktion F(x).
Der Graph 4 gehört zur Funktion f(x).