Aufgabenbeispiele von Ketten- und Produktregel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 2 3 ( 2 3 x -4 ) 5 und vereinfache:

Lösung einblenden

f(x)= - 2 3 ( 2 3 x -4 ) 5

f'(x)= - 10 3 ( 2 3 x -4 ) 4 · ( 2 3 +0 )

= - 10 3 ( 2 3 x -4 ) 4 · ( 2 3 )

= - 20 9 ( 2 3 x -4 ) 4

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -2 -3x -4 und vereinfache:

Lösung einblenden

f(x)= -2 -3x -4

= -2 ( -3x -4 ) 1 2

=> f'(x) = - ( -3x -4 ) - 1 2 · ( -3 +0 )

f'(x)= - 1 -3x -4 · ( -3 +0 )

= - 1 -3x -4 · ( -3 )

= 3 -3x -4

Kettenregel ohne e-Fktn 2 (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 1 x 2 -1 und vereinfache:

Lösung einblenden

f(x)= 1 x 2 -1

= ( x 2 -1 ) -1

=> f'(x) = - ( x 2 -1 ) -2 · ( 2x +0 )

f'(x)= - 1 ( x 2 -1 ) 2 · ( 2x +0 )

= - 1 ( x 2 -1 ) 2 · ( 2x )

= -2 x ( x 2 -1 ) 2

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-1).

Lösung einblenden

Wir können der Zeichnung rechts f(-1) = -3 entnehmen.

Also gilt h(-1) = g(f(-1)) = g(-3)

g(-3) können wir auch wieder am (blauen) Graph ablesen:
h(-1) = g(f(-1)) = g(-3) = -3.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 0 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 0 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(3|0), der auf dem Graph von g liegt, also gilt:
0 = g(3)
Wegen 0 = h(x)= g(f(x))= g(3) gilt also f(x) = 3.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =3 sind.

Diese erkennen wir bei Q1(1|3) und Q2(-3|3), also bei
x1 = 1 und x2 = -3

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(1) = 1 entnehmen.

Wir suchen also f(f '(1)) = f(1).

f(1) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(1)) = f(1) = 1 .

Verkettung von f und f' (mit F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(1) = 1 entnehmen.

Wir suchen also f(f '(1)) = f(1).

f(1) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(1)) = f(1) = -2 .

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= 1 x 2 · cos( x ) und vereinfache:

Lösung einblenden

f(x)= 1 x 2 · cos( x )

= x -2 · cos( x )

=> f'(x) = -2 x -3 · cos( x ) + x -2 · ( - sin( x ) )

f'(x)= - 2 x 3 · cos( x ) + 1 x 2 · ( - sin( x ) )

= -2 cos( x ) x 3 - sin( x ) x 2

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -2 sin( x +5 ) und vereinfache:

Lösung einblenden

f(x)= -2 sin( x +5 )

f'(x)= -2 cos( x +5 )

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( x 2 -5 ) · cos( -2x ) und vereinfache:

Lösung einblenden

f(x)= ( x 2 -5 ) · cos( -2x )

f'(x)= ( 2x +0 ) · cos( -2x ) + ( x 2 -5 ) · ( - sin( -2x ) · ( -2 ) )

= 2x · cos( -2x ) + ( x 2 -5 ) · 2 sin( -2x )

= 2 x · cos( -2x ) +2 ( x 2 -5 ) · sin( -2x )

waagrechte Tang. bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -2x -3
und der Graph einer Funktion g (in der Abblidung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x -2 )⋅g(x) + ( x 2 -2x -3 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell die Nullstellen von g bei x = -1 und bei x = 5.
(also gilt g(-1) = g(-1) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -2x -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

x1,2 = +2 ± 4 +12 2

x1,2 = +2 ± 16 2

x1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

x2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

Wir haben also sowohl bei f als auch bei g eine eine Nullstelle bei x = -1, wodurch in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(-1) = f'(-1)⋅g(-1) + f(-1)⋅g'(-1) = f'(-1)⋅0 + 0⋅g'(-1) = 0.

Damit hat h an der Stelle x = -1 eine waagrechte Tangente.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= ( x -3 ) 2 und der Graph einer Funktion g (in der Abblidung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

( x -3 ) 2 = 0 | 2
x -3 = 0
x -3 = 0 | +3
x = 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(3)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 3 gilt, denn dann gilt ja f(g(x)) = f( 3) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 3 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 3, dass dies gerade 0 Schnittpunkte sind.

Das heißt, dass diese 0 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( 3) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagrechte Tang. bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 3 +2x +4
und der Graph einer Funktion g (in der Abblidung rechts).

Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Kettenregel wissen wir, dass für die Ableitung von h(x)=f(g(x)) gilt:
h'(x) = f'(g(x))⋅g'(x).

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -3 und bei x = 1 sind.
Der Extrempunkt des Graphs liegt bei x = -1, (also gilt g '(-1) = 0).

Damit ist ja bereits ein Faktor des Kettenregelprodukts =0. Wenn wir also x = -1 in h'(x) einsetzen, erhalten wir:
h'(-1) = f'(g(-1))⋅g'(-1) = f'(g(-1))⋅0 = 0.

Damit hat h an der Stelle x = -1 eine waagrechte Tangente.