Aufgabenbeispiele von Ketten- und Produktregel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( - 1 4 x -5 ) 4 und vereinfache:

Lösung einblenden

f(x)= ( - 1 4 x -5 ) 4

f'(x)= 4 ( - 1 4 x -5 ) 3 · ( - 1 4 +0 )

= 4 ( - 1 4 x -5 ) 3 · ( - 1 4 )

= - ( - 1 4 x -5 ) 3

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 1 4 ( - 1 4 x +2 ) 3 und vereinfache:

Lösung einblenden

f(x)= 1 4 ( - 1 4 x +2 ) 3

= 1 4 ( - 1 4 x +2 ) -3

=> f'(x) = - 3 4 ( - 1 4 x +2 ) -4 · ( - 1 4 +0 )

f'(x)= - 3 4 ( - 1 4 x +2 ) 4 · ( - 1 4 +0 )

= - 3 4 ( - 1 4 x +2 ) 4 · ( - 1 4 )

= 3 16 ( - 1 4 x +2 ) 4

Kettenregel ohne e-Fktn 2 (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -2 -3x +4 und vereinfache:

Lösung einblenden

f(x)= -2 -3x +4

= -2 ( -3x +4 ) 1 2

=> f'(x) = - ( -3x +4 ) - 1 2 · ( -3 +0 )

f'(x)= - 1 -3x +4 · ( -3 +0 )

= - 1 -3x +4 · ( -3 )

= 3 -3x +4

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(2).

Lösung einblenden

Wir können der Zeichnung rechts f(2) = -1 entnehmen.

Also gilt h(2) = g(f(2)) = g(-1)

g(-1) können wir auch wieder am (blauen) Graph ablesen:
h(2) = g(f(2)) = g(-1) = -2.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 3 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 3 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(0|3), der auf dem Graph von g liegt, also gilt:
3 = g(0)
Wegen 3 = h(x)= g(f(x))= g(0) gilt also f(x) = 0.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =0 sind.

Diese erkennen wir bei Q1(-1|0) und Q2(3|0), also bei
x1 = -1 und x2 = 3

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(-2)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(-2) = -1 entnehmen.

Wir suchen also f(f '(-2)) = f(-1).

f(-1) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(-2)) = f(-1) = -3,5 .

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-2).

Lösung einblenden

Wir können der Zeichnung rechts f(-2) = 2 entnehmen.

Also gilt h(-2) = g(f(-2)) = g(2)

g(2) können wir auch wieder am (blauen) Graph ablesen:
h(-2) = g(f(-2)) = g(2) = 1.

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= x 5 · cos( x ) und vereinfache:

Lösung einblenden

f(x)= x 5 · cos( x )

f'(x)= 5 x 4 · cos( x ) + x 5 · ( - sin( x ) )

= 5 x 4 · cos( x ) - x 5 · sin( x )

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x · ( -x +5 ) 2 und vereinfache:

Lösung einblenden

f(x)= x · ( -x +5 ) 2

= x 1 2 · ( -x +5 ) 2

=> f'(x) = 1 2 x - 1 2 · ( -x +5 ) 2 + x 1 2 · ( 2( -x +5 ) · ( -1 +0 ) )

f'(x)= 1 2 x · ( -x +5 ) 2 + x · ( 2( -x +5 ) · ( -1 +0 ) )

= 1 2 ( -x +5 ) 2 x + x · ( 2( -x +5 ) · ( -1 ) )

= 1 2 ( -x +5 ) 2 x + x · ( -2( -x +5 ) )

= 1 2 ( -x +5 ) 2 x -2 x ( -x +5 )

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 2x -5 ) · sin( x 2 ) und vereinfache:

Lösung einblenden

f(x)= ( 2x -5 ) · sin( x 2 )

f'(x)= ( 2 +0 ) · sin( x 2 ) + ( 2x -5 ) · cos( x 2 ) · 2x

= 2 sin( x 2 ) + ( 2x -5 ) · 2 cos( x 2 ) x

= 2 sin( x 2 ) +2 ( 2x -5 ) cos( x 2 ) x

waagrechte Tang. bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -4x +4
und der Graph einer Funktion g (in der Abblidung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x -4 )⋅g(x) + ( x 2 -4x +4 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -3 und bei x = 3 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 4 21

x1,2 = +4 ± 16 -16 2

x1,2 = +4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 4 2 = 2

Theoretisch erkennen wir schon hier, dass an dieser doppelten Nullstelle auch ein Extrempunkt vorliegen muss, wir rechnen aber trotzdem noch mal nach:

Für die Ableitung von f mit f(x)= x 2 -4x +4 gilt: f'(x)= 2x -4 . Diese setzen wir = 0:

2x -4 = 0 | +4
2x = 4 |:2
x = 2

Es gilt also f(2) = f'(2) = 0, somit gilt h'(2) = f'(2)⋅g(2) + f(2)⋅g'(2) = 0⋅g(2) + 0⋅g'(2) = 0.

Somit hat h an der Stelle x =2 eine waagrechte Tangente.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= ( x -1 ) 3 und der Graph einer Funktion g (in der Abblidung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

( x -1 ) 3 = 0 | 3
x -1 = 0
x -1 = 0 | +1
x = 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(1)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 1 gilt, denn dann gilt ja f(g(x)) = f( 1) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 1 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 1, dass dies gerade 2 Schnittpunkte sind.

Das heißt, dass diese 2 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( 1) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagrechte Tang. bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -2x -8
und der Graph einer Funktion g (in der Abblidung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x -2 )⋅g(x) + ( x 2 -2x -8 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -1 und bei x = 3 sind.
Der Extrempunkt des Graphs liegt bei x = 1, (also gilt g '(1) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -2x -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

x1,2 = +2 ± 4 +32 2

x1,2 = +2 ± 36 2

x1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

x2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Für die Ableitung von f mit f(x)= x 2 -2x -8 gilt: f'(x)= 2x -2 . Diese setzen wir = 0:

2x -2 = 0 | +2
2x = 2 |:2
x = 1

Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = 1, wodurch mit f'(1)=0 und g'(1)=0 in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(1) = f'(1)⋅g(1) + f(1)⋅g'(1) = 0⋅g(1) + f(1)⋅0 = 0.

Damit hat h an der Stelle x = 1 eine waagrechte Tangente.