Aufgabenbeispiele von Potenzen mit rationalen Hochzahlen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


negative Hochzahlen umwandeln

Beispiel:

Schreibe die Potenz so um, dass keine keine negative Zahl mehr in der Hochzahl ist: 6 x -9

Lösung einblenden

x -9 ist ja nur eine andere Schreibweise für 1 x 9 .

Also ist 6 x -9 das gleiche wie 6 · 1 x 9 = 6 x 9 .

n-te Wurzel - rationale Hochzahl

Beispiel:

Schreibe um in eine Potenz ohne Wurzelzeichen: x 4

Lösung einblenden

Eine 4-te Wurzel kann man immer auch als (...) 1 4 schreiben, also gilt hier: x 4 = x 1 4

rationale (+ neg.) Hochzahl umwandeln

Beispiel:

Schreibe 1 x 3 5 um in eine Potenz ohne Wurzelzeichen und ohne einen Nenner mit x.

Lösung einblenden

Eine 5-te Wurzel kann man immer auch als (...) 1 5 schreiben, also gilt hier: 1 x 3 5 = 1 ( x 3 ) - 1 5

Diese Doppelpotenz können wir nun mit dem Potenzgesetz weiter verrechnen:

1 ( x 3 ) - 1 5 = 1 x 1 5 · 3 = 1 x 3 5 = x - 3 5

rationale Potenzen (im Kopf)

Beispiel:

Vereinfache den folgenden Term: 25 1 2

Lösung einblenden

25 1 2

= 25

= 5

Potenzen ohne WTR

Beispiel:

Vereinfache den folgenden Term: 3 36 : 3 34

Lösung einblenden

3 36 : 3 34

= 3 36 -34

= 3 2

= 9

Potenzen von Dezimalzahlen

Beispiel:

Vereinfache den folgenden Term: 0,001 2 3

Lösung einblenden

0,001 2 3

= ( 0,001 3 ) 2

= 0,1 2

= 0,01

Potenzgesetze rationale Exp.

Beispiel:

Berechne ohne WTR: ( 16 -3 ) - 1 2

Am Ende muss also eine (potenzfreie) Zahl stehen.

Lösung einblenden

( 16 -3 ) - 1 2

= 16 -3 · ( - 1 2 )

= 16 1 2 · 3

= ( 16 1 2 ) 3

= ( 16 ) 3

= 4 3

= 64

rationale Hochzahlen vereinfachen

Beispiel:

Vereinfache den folgenden Term: x 2 6 · x 4 3

Dabei darf im Ergebnis nur noch eine Hochzahl stehen!

Lösung einblenden

Hier ist es eben wichtig, dass man die Potenzgesetze erkennt und dann rückwärts anwendet:

x 2 6 · x 4 3

= x 2 6 x 4 3

= x 2 6 + 4 3

= x 2 6 + 8 6

= x 10 6

= x 5 3

rationale Potenzen verrechnen

Beispiel:

Vereinfache den folgenden Term: ( x 2 3 · x 10 6 ) 6

Dabei darf im Ergebnis nur noch eine Hochzahl stehen!

Lösung einblenden

Hier ist es eben wichtig, dass man die Potenzgesetze erkennt und dann rückwärts anwendet:

( x 2 3 · x 10 6 ) 6

= ( x 2 3 x 10 6 ) 6

= ( x 2 3 x 5 3 ) 6

= ( x 2 3 + 5 3 ) 6

= ( x 7 3 ) 6

= x 7 3 · 6

= x 14

Doppelbruchterm vereinfachen

Beispiel:

Vereinfache den folgenden Term: 5 s -1 9 s -2

Lösung einblenden

5 s -1 9 s -2

Zuerst schreiben wir die Potenzen mit negativen Hochzahlen in Bruchschreibweise um:

= 5 s 9 s 2

Jetzt lösen wir den Doppelbruch auf, indem wir den Zähler mit dem Kehrbruch des Nenners multiplizieren:

= 5 s · s 2 9

= 5 9 s