Aufgabenbeispiele von Polynomgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x -2 ) 2 · ( x +4 ) 2 = 0

Lösung einblenden
x ( x -2 ) 2 ( x +4 ) 2 = 0
x ( ( x -2 ) ( x +4 ) ) 2 = 0
( ( x -2 ) ( x +4 ) ) 2 x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( ( x -2 ) ( x +4 ) ) 2 = 0 | 2
( x -2 ) ( x +4 ) = 0
( x -2 ) ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -2 = 0 | +2
x1 = 2

2. Fall:

x +4 = 0 | -4
x2 = -4

2. Fall:

x3 = 0

L={ -4 ; 0; 2 }

-4 ist 2-fache Lösung! 2 ist 2-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 2 - x = 0

Lösung einblenden
x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

L={0; 1 }

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -5 x 2 -36 = 0

Lösung einblenden
x 4 -5 x 2 -36 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -5u -36 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · ( -36 ) 21

u1,2 = +5 ± 25 +144 2

u1,2 = +5 ± 169 2

u1 = 5 + 169 2 = 5 +13 2 = 18 2 = 9

u2 = 5 - 169 2 = 5 -13 2 = -8 2 = -4

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

u2: x 2 = -4

x 2 = -4 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -3 ; 3 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

4 + x 4 = 5 x 2

Lösung einblenden
4 + x 4 = 5 x 2 | -5 x 2
x 4 -5 x 2 +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -5u +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

u1,2 = +5 ± 25 -16 2

u1,2 = +5 ± 9 2

u1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

u2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = 1

x 2 = 1 | 2
x3 = - 1 = -1
x4 = 1 = 1

L={ -2 ; -1 ; 1 ; 2 }