Aufgabenbeispiele von Grundrechenarten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Addition (Kopfrechnen)

Beispiel:

Berechne die Summe (im Kopf): 411 + 72

Lösung einblenden
Die korrekte Antwort lautet:
411 + 72 = 483

Addition (schriftlich)

Beispiel:

Berechne die Summe schriftlich: 20118 + 14787 + 4756 + 847

Lösung einblenden
Die korrekte Antwort lautet:
20118 + 14787 + 4756 + 847 = 40508

Schriftliche Rechnung:
2 0 1 1 8
+ 1 4 7 8 7
+ 4 7 5 6
+ 8 4 7
1 2 2 2
40508

Subtraktion (Kopfrechnen)

Beispiel:

Berechne die Differenz (im Kopf): 341 - 67

Lösung einblenden
Die korrekte Antwort lautet:
341 - 67 = 274

Subtraktion (schriftlich)

Beispiel:

Berechne die Differenz schriftlich: 14149 - 4777

Lösung einblenden
Die korrekte Antwort lautet:
14149 - 4777 = 9372

Schriftliche Rechnung:
14149
- 4 7 7 7
1 1 1
9372

Multiplikation (Kopfrechnen)

Beispiel:

Berechne das Produkt (im Kopf): 6 ⋅ 8

Lösung einblenden
Die korrekte Antwort lautet:
6 ⋅ 8 = 48

Multiplikation (schriftlich)

Beispiel:

Berechne das Produkt (schriftlich oder im Kopf): 950 ⋅ 146

Lösung einblenden
Die korrekte Antwort lautet:
950 ⋅ 146 = 138700

Schriftliche Rechnung:

950146
950
3800
5700
1 1
138700

Division (Kopfrechnen)

Beispiel:

Berechne den Quotienten im Kopf: 44 : 11

Lösung einblenden
Die korrekte Antwort lautet:
44 : 11 = 4

Division (schriftlich)

Beispiel:

Berechne den Quotienten (schriftlich oder im Kopf): 8973 : 9

Lösung einblenden
Die korrekte Antwort lautet:
8973 : 9 = 997

Schriftliche Rechnung:

8973:9=997
- 8 1
87
- 8 1
63
- 6 3
0

Min bzw. Max einer Summe

Beispiel:

Verteile die sechs Ziffern 8, 1, 4, 3, 6, 5 auf zwei dreistellige Zahlen so, dass ihre Summe am größten wird.
Berechne dann diese Summe.

Lösung einblenden

Wir sortieren zuerst die Ziffern in absteigender Reihenfolge:

8, 6, 5, 4, 3, 1

Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst große Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden größten Ziffern und an der Einer-Stelle die beiden kleinsten Ziffern stehen.

Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.

Wir verteilen also die Ziffern in absteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
853 + 641 = 1494

Kästchenaufgabe (Rückwärts rechnen)

Beispiel:

Was muss in das Kästchen?
22 - ⬜ = 14

Lösung einblenden

22 - ⬜ = 14

Wenn man von 22 das Kästchen subtrahiert, erhält man 14. Also muss doch das Kästchen gerade der Unterschied zwischen 22 und 14 sein.

Somit gilt:
⬜ = 22 - 14 = 8

Das Kästchen muss also 8 sein, denn es gilt: 22 - 8 = 14

Rückwärtsrechnen verbal

Beispiel:

Wie viel muss man zu 4 addieren, um 11 zu erhalten?

Lösung einblenden

"Wie viel muss man zu 4 addieren, um 11 zu erhalten?" bedeutet ja:

4 + ⬜ = 11

Wenn man zum Kästchen 4 addiert, erhält man 11. Also muss doch das Kästchen um 4 kleiner sein als 11.

Somit gilt:
⬜ = 11 - 4 = 7

Das Kästchen muss also 7 sein, denn es gilt: 4 + 7 = 11

Anwendungen

Beispiel:

Fred geht einkaufen. Dabei kauft er 5 Packungen Chips à 2€, 2 Schalen Erdbeeren à 4€, 5 Flaschen Mineralwasser à 1€ und 3 Becher veganen Yoghurt à 2€. Er bezahlt mit einem 50-€ Schein. Wie viel bekommt er wieder raus?

Lösung einblenden

Wir berechnen erst die Summe (von den Produkten) aus der Aufgabe:

5⋅ 2 € + 2⋅ 4 € + 5⋅ 1 € + 3⋅ 2 €
= 10 € + 8 € + 5 € + 6 €
= 29 €

Jetzt müssen wir diese Summe von 50 € abziehen: 50 € - 29 € = 21 €

Das Wechselgeld ist also 21 €