Aufgabenbeispiele von Grundrechenarten
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Addition (Kopfrechnen)
Beispiel:
Berechne die Summe (im Kopf): 424 + 431
424 + 431 = 855
Addition (schriftlich)
Beispiel:
Berechne die Summe schriftlich: 4713 + 37435 + 5643
4713 + 37435 + 5643 = 47791
Schriftliche Rechnung:
| 4 | 7 | 1 | 3 | ||
| + | 3 | 7 | 4 | 3 | 5 |
| + | 5 | 6 | 4 | 3 | |
| 1 | 1 | 1 | |||
| 4 | 7 | 7 | 9 | 1 |
Subtraktion (Kopfrechnen)
Beispiel:
Berechne die Differenz (im Kopf): 432 - 283
432 - 283 = 149
Subtraktion (schriftlich)
Beispiel:
Berechne die Differenz schriftlich: 37542 - 6299 - 20997
37542 - 6299 - 20997 = 10246
Schriftliche Rechnung:
| 3 | 7 | 5 | 4 | 2 | |
| - | 6 | 2 | 9 | 9 | |
| - | 2 | 0 | 9 | 9 | 7 |
| 1 | 2 | 2 | |||
| 1 | 0 | 2 | 4 | 6 |
Multiplikation (Kopfrechnen)
Beispiel:
Berechne das Produkt (im Kopf): 8 ⋅ 18
8 ⋅ 18 = 144
Multiplikation (schriftlich)
Beispiel:
Berechne das Produkt (schriftlich oder im Kopf): 425 ⋅ 664
425 ⋅ 664 = 282200
Schriftliche Rechnung:
| 4 | 2 | 5 | ⋅ | 6 | 6 | 4 | ||
| 2 | 5 | 5 | 0 | |||||
| 2 | 5 | 5 | 0 | |||||
| 1 | 7 | 0 | 0 | |||||
| 1 | 1 | |||||||
| 2 | 8 | 2 | 2 | 0 | 0 |
Division (Kopfrechnen)
Beispiel:
Berechne den Quotienten im Kopf: 126 : 14
126 : 14 = 9
Division (schriftlich)
Beispiel:
Berechne den Quotienten (schriftlich oder im Kopf): 1124 : 2
1124 : 2 = 562
Schriftliche Rechnung:
| 1 | 1 | 2 | 4 | : | 2 | = | 5 | 6 | 2 | ||
| - | 1 | 0 | |||||||||
| 1 | 2 | ||||||||||
| - | 1 | 2 | |||||||||
| 0 | 4 | ||||||||||
| - | 4 | ||||||||||
| 0 |
Min bzw. Max einer Summe
Beispiel:
Verteile die sechs Ziffern 1, 6, 4, 5, 3, 7 auf zwei dreistellige Zahlen so, dass ihre Summe am kleinsten wird.
Berechne dann diese Summe.
Wir sortieren zuerst die Ziffern in aufsteigender Reihenfolge:
1, 3, 4, 5, 6, 7
Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst kleine Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden kleinsten Ziffern und an der Einer-Stelle die beiden größten Ziffern stehen.
Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.
Wir verteilen also die Ziffern in aufsteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
146 + 357 = 503
Kästchenaufgabe (Rückwärts rechnen)
Beispiel:
Was muss in das Kästchen?
3 ⋅ ⬜ = 39
3 ⋅ ⬜ = 39
Wenn man das Kästchen mit 3 multipliziert, erhält man 39. Also muss man doch das Kästchen erhalten, wenn man 39 durch 3 dividiert.
Somit gilt:
⬜ = 39 : 3 = 13
Das Kästchen muss also 13 sein, denn es gilt:
3 ⋅
Rückwärtsrechnen verbal
Beispiel:
Zu welcher Zahl muss man 3 addieren, um 31 zu erhalten?
"Zu welcher Zahl muss man 3 addieren, um 31 zu erhalten?" bedeutet ja:
⬜ +
Wenn man zum Kästchen 3 addiert, erhält man 31. Also muss doch das Kästchen um 3 kleiner sein als 31.
Somit gilt:
⬜ = 31 - 3 = 28
Das Kästchen muss also 28 sein, denn es gilt:
28 +
Anwendungen
Beispiel:
In einem Landkreis gibt es 2 Gemeinden mit 6000 Einwohner, 4 Gemeinden mit 4000 Einwohner und 4 Gemeinden mit 6000 Einwohner. Die Kreisstadt ist mit 35000 Einwohner die größte Gemeinde im Landkreis. Wie viele Einwohner hat der Landkreis?
Wir berechnen erst die Summe (von den Produkten) aus der Aufgabe:
2⋅ 6000 + 4⋅ 4000 + 4⋅ 6000 + 35000
= 12000 + 16000 + 24000 + 35000
= 87000
