Aufgabenbeispiele von Grundrechenarten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Addition (Kopfrechnen)

Beispiel:

Berechne die Summe (im Kopf): 450 + 109

Lösung einblenden
Die korrekte Antwort lautet:
450 + 109 = 559

Addition (schriftlich)

Beispiel:

Berechne die Summe schriftlich: 14384 + 8596 + 27639 + 6602

Lösung einblenden
Die korrekte Antwort lautet:
14384 + 8596 + 27639 + 6602 = 57221

Schriftliche Rechnung:
1 4 3 8 4
+ 8 5 9 6
+ 2 7 6 3 9
+ 6 6 0 2
2 2 2 2
57221

Subtraktion (Kopfrechnen)

Beispiel:

Berechne die Differenz (im Kopf): 419 - 348

Lösung einblenden
Die korrekte Antwort lautet:
419 - 348 = 71

Subtraktion (schriftlich)

Beispiel:

Berechne die Differenz schriftlich: 27081 - 13144

Lösung einblenden
Die korrekte Antwort lautet:
27081 - 13144 = 13937

Schriftliche Rechnung:
27081
- 1 3 1 4 4
1 1
13937

Multiplikation (Kopfrechnen)

Beispiel:

Berechne das Produkt (im Kopf): 10 ⋅ 6

Lösung einblenden
Die korrekte Antwort lautet:
10 ⋅ 6 = 60

Multiplikation (schriftlich)

Beispiel:

Berechne das Produkt (schriftlich oder im Kopf): 427 ⋅ 724

Lösung einblenden
Die korrekte Antwort lautet:
427 ⋅ 724 = 309148

Schriftliche Rechnung:

427724
2989
854
1708
1 1 2
309148

Division (Kopfrechnen)

Beispiel:

Berechne den Quotienten im Kopf: 126 : 9

Lösung einblenden
Die korrekte Antwort lautet:
126 : 9 = 14

Division (schriftlich)

Beispiel:

Berechne den Quotienten (schriftlich oder im Kopf): 4000 : 16

Lösung einblenden
Die korrekte Antwort lautet:
4000 : 16 = 250

Schriftliche Rechnung:

4000:16=250
- 3 2
80
- 8 0
00
- 0
0

Min bzw. Max einer Summe

Beispiel:

Verteile die sechs Ziffern 3, 1, 5, 4, 7, 8 auf zwei dreistellige Zahlen so, dass ihre Summe am kleinsten wird.
Berechne dann diese Summe.

Lösung einblenden

Wir sortieren zuerst die Ziffern in aufsteigender Reihenfolge:

1, 3, 4, 5, 7, 8

Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst kleine Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden kleinsten Ziffern und an der Einer-Stelle die beiden größten Ziffern stehen.

Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.

Wir verteilen also die Ziffern in aufsteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
147 + 358 = 505

Kästchenaufgabe (Rückwärts rechnen)

Beispiel:

Was muss in das Kästchen?
35 : ⬜ = 7

Lösung einblenden

35 : ⬜ = 7

Wenn man 35 durch das Kästchen teilt, erhält man 7. Also muss doch ⬜ ⋅ 7 = 35 gelten.

Man muss somit 35 durch 7 teilen um das Kästchen zu erhalten:

⬜ = 35 : 7 = 5

Das Kästchen muss also 5 sein, denn es gilt: 35 : 5 = 7

Rückwärtsrechnen verbal

Beispiel:

Wie viel muss man zu 11 addieren, um 15 zu erhalten?

Lösung einblenden

"Wie viel muss man zu 11 addieren, um 15 zu erhalten?" bedeutet ja:

11 + ⬜ = 15

Wenn man zum Kästchen 11 addiert, erhält man 15. Also muss doch das Kästchen um 11 kleiner sein als 15.

Somit gilt:
⬜ = 15 - 11 = 4

Das Kästchen muss also 4 sein, denn es gilt: 11 + 4 = 15

Anwendungen

Beispiel:

Karl möchte sich eine Playlist für Workouts erstellen. Sie soll genau eine halbe Stunde dauern. Auf die Playlist soll ein Lied von Robin Schulz, das 3 min dauert, ein Lied von Mark Foster mit 3 min, eins von Justin Bieber mit 3 min und ein Lied von Max Giesinger mit 5 min. Sein absolutes Lieblingslied von Bruno Mars, das 3 min lang ist, möchte er sogar zweimal auf seine Workout-Playlist draufmachen. Wie viele Minuten muss er noch füllen bis er seine Playlist fertig hat?

Lösung einblenden

Wir berechnen erst die Summe (von den Produkten) aus der Aufgabe:

3 min + 3 min + 3 min + 5 min + 2⋅ 3 min
= 3 min + 3 min + 3 min + 5 min + 6 min
= 20 min

Jetzt müssen wir diese Summe von 30 min abziehen: 30 min - 20 min = 10 min

Die noch freie Zeit seiner Playlist ist also 10 min