Aufgabenbeispiele von Grundrechenarten
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Addition (Kopfrechnen)
Beispiel:
Berechne die Summe (im Kopf): 534 + 575
534 + 575 = 1109
Addition (schriftlich)
Beispiel:
Berechne die Summe schriftlich: 28128 + 5104 + 22403
28128 + 5104 + 22403 = 55635
Schriftliche Rechnung:
| 2 | 8 | 1 | 2 | 8 | |
| + | 5 | 1 | 0 | 4 | |
| + | 2 | 2 | 4 | 0 | 3 |
| 1 | 1 | ||||
| 5 | 5 | 6 | 3 | 5 |
Subtraktion (Kopfrechnen)
Beispiel:
Berechne die Differenz (im Kopf): 514 - 269
514 - 269 = 245
Subtraktion (schriftlich)
Beispiel:
Berechne die Differenz schriftlich: 62504 - 52464
62504 - 52464 = 10040
Schriftliche Rechnung:
| 6 | 2 | 5 | 0 | 4 | |
| - | 5 | 2 | 4 | 6 | 4 |
| 1 | |||||
| 1 | 0 | 0 | 4 | 0 |
Multiplikation (Kopfrechnen)
Beispiel:
Berechne das Produkt (im Kopf): 7 ⋅ 17
7 ⋅ 17 = 119
Multiplikation (schriftlich)
Beispiel:
Berechne das Produkt (schriftlich oder im Kopf): 174 ⋅ 607
174 ⋅ 607 = 105618
Schriftliche Rechnung:
| 1 | 7 | 4 | ⋅ | 6 | 0 | 7 | ||
| 1 | 0 | 4 | 4 | |||||
| 0 | ||||||||
| 1 | 2 | 1 | 8 | |||||
| 1 | 0 | 5 | 6 | 1 | 8 |
Division (Kopfrechnen)
Beispiel:
Berechne den Quotienten im Kopf: 195 : 15
195 : 15 = 13
Division (schriftlich)
Beispiel:
Berechne den Quotienten (schriftlich oder im Kopf): 252 : 9
252 : 9 = 28
Schriftliche Rechnung:
| 2 | 5 | 2 | : | 9 | = | 2 | 8 | ||
| - | 1 | 8 | |||||||
| 7 | 2 | ||||||||
| - | 7 | 2 | |||||||
| 0 |
Min bzw. Max einer Summe
Beispiel:
Verteile die sechs Ziffern 3, 5, 9, 1, 8, 6 auf zwei dreistellige Zahlen so, dass ihre Summe am größten wird.
Berechne dann diese Summe.
Wir sortieren zuerst die Ziffern in absteigender Reihenfolge:
9, 8, 6, 5, 3, 1
Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst große Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden größten Ziffern und an der Einer-Stelle die beiden kleinsten Ziffern stehen.
Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.
Wir verteilen also die Ziffern in absteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
963 + 851 = 1814
Kästchenaufgabe (Rückwärts rechnen)
Beispiel:
Was muss in das Kästchen?
22 + ⬜ = 25
22 + ⬜ = 25
Wenn man zum Kästchen 22 addiert, erhält man 25. Also muss doch das Kästchen um 22 kleiner sein als 25.
Somit gilt:
⬜ = 25 - 22 = 3
Das Kästchen muss also 3 sein, denn es gilt:
22 +
Rückwärtsrechnen verbal
Beispiel:
Zu welcher Zahl muss man 14 addieren, um 47 zu erhalten?
"Zu welcher Zahl muss man 14 addieren, um 47 zu erhalten?" bedeutet ja:
⬜ +
Wenn man zum Kästchen 14 addiert, erhält man 47. Also muss doch das Kästchen um 14 kleiner sein als 47.
Somit gilt:
⬜ = 47 - 14 = 33
Das Kästchen muss also 33 sein, denn es gilt:
33 +
Anwendungen
Beispiel:
Zwei engagierte Klassensprecher wollen selbständig eine Klassenfahrt für ihre Klasse mit 16 Schülerinnen und Schüler organisieren. Dafür buchen sie eine Busfahrt für 700€. Der Eintritt in einen Freizeitpark kostet pro Person 8€. Der Eintritt ins Museum kostet eigentlich 3€ pro Person. Dort konnten sie aber zwei Freikarten raushandeln. Die beiden Klassensprecher haben von jedem der 16 Schülerinnen und Schüler 60€ eingesammelt, um alle Kosten davon zu bezahlen. Wieviel € müsste nach der Klassenfahrt noch in der Klassenkasse sein?
Wir berechnen erst die Summe (von den Produkten) aus der Aufgabe:
700 € + 16⋅ 8 € + 14⋅ 3 €
= 700 € + 128 € + 42 €
= 870 €
Der Betrag von dem diese Summe abgezogen werden muss, ist 16 ⋅ 60€ = 960 €.
Jetzt müssen wir diese Summe von 960 € abziehen: 960 € - 870 € = 90 €
Der Rest in der Klassenkasse ist also 90 €