Aufgabenbeispiele von Grundrechenarten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Addition (Kopfrechnen)

Beispiel:

Berechne die Summe (im Kopf): 70 + 292

Lösung einblenden
Die korrekte Antwort lautet:
70 + 292 = 362

Addition (schriftlich)

Beispiel:

Berechne die Summe schriftlich: 11480 + 85198

Lösung einblenden
Die korrekte Antwort lautet:
11480 + 85198 = 96678

Schriftliche Rechnung:
1 1 4 8 0
+ 8 5 1 9 8
1
96678

Subtraktion (Kopfrechnen)

Beispiel:

Berechne die Differenz (im Kopf): 479 - 54

Lösung einblenden
Die korrekte Antwort lautet:
479 - 54 = 425

Subtraktion (schriftlich)

Beispiel:

Berechne die Differenz schriftlich: 64264 - 54109 - 2429

Lösung einblenden
Die korrekte Antwort lautet:
64264 - 54109 - 2429 = 7726

Schriftliche Rechnung:
64264
- 5 4 1 0 9
- 2 4 2 9
1 1 2
7726

Multiplikation (Kopfrechnen)

Beispiel:

Berechne das Produkt (im Kopf): 9 ⋅ 14

Lösung einblenden
Die korrekte Antwort lautet:
9 ⋅ 14 = 126

Multiplikation (schriftlich)

Beispiel:

Berechne das Produkt (schriftlich oder im Kopf): 242 ⋅ 818

Lösung einblenden
Die korrekte Antwort lautet:
242 ⋅ 818 = 197956

Schriftliche Rechnung:

242818
1936
242
1936
1
197956

Division (Kopfrechnen)

Beispiel:

Berechne den Quotienten im Kopf: 57 : 3

Lösung einblenden
Die korrekte Antwort lautet:
57 : 3 = 19

Division (schriftlich)

Beispiel:

Berechne den Quotienten (schriftlich oder im Kopf): 2520 : 3

Lösung einblenden
Die korrekte Antwort lautet:
2520 : 3 = 840

Schriftliche Rechnung:

2520:3=840
- 2 4
12
- 1 2
00
- 0
0

Min bzw. Max einer Summe

Beispiel:

Verteile die sechs Ziffern 9, 6, 7, 8, 5, 4 auf zwei dreistellige Zahlen so, dass ihre Summe am größten wird.
Berechne dann diese Summe.

Lösung einblenden

Wir sortieren zuerst die Ziffern in absteigender Reihenfolge:

9, 8, 7, 6, 5, 4

Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst große Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden größten Ziffern und an der Einer-Stelle die beiden kleinsten Ziffern stehen.

Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.

Wir verteilen also die Ziffern in absteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
975 + 864 = 1839

Kästchenaufgabe (Rückwärts rechnen)

Beispiel:

Was muss in das Kästchen?
⬜ ⋅ 7 = 35

Lösung einblenden

⬜ ⋅ 7 = 35

Wenn man das Kästchen mit 7 multipliziert, erhält man 35. Also muss man doch das Kästchen erhalten, wenn man 35 durch 7 dividiert.

Somit gilt:
⬜ = 35 : 7 = 5

Das Kästchen muss also 5 sein, denn es gilt: 5 ⋅ 7 = 35

Rückwärtsrechnen verbal

Beispiel:

Wie viel muss man von 64 subtrahieren, um 49 zu erhalten?

Lösung einblenden

"Wie viel muss man von 64 subtrahieren, um 49 zu erhalten?" bedeutet ja:

64 - ⬜ = 49

Wenn man von 64 das Kästchen subtrahiert, erhält man 49. Also muss doch das Kästchen gerade der Unterschied zwischen 64 und 49 sein.

Somit gilt:
⬜ = 64 - 49 = 15

Das Kästchen muss also 15 sein, denn es gilt: 64 - 15 = 49

Anwendungen

Beispiel:

Gertrude möchte einen Kindergeburtstag auf der Bowlingbahn mit richtig vielen Gästen feiern. Dazu möchte sie 8 Mädchen und 3 Jungs aus ihrer Klasse einladen. Außerdem stehen noch 4 Kinder aus dem Sportverein und 4 von der Jugenkapelle des Musikvereins auf der Gästeliste. Nach dem Bowling soll dann ihr Vater alle Kinder zu ihr nach Hause fahren. Wie oft müsste ihr Vater fahren, wenn er immer 4 Kinder im Auto mitnehmen kann?

Lösung einblenden

Wir berechnen erst die Summe aus der Aufgabe:

1 + 8 + 3 + 4 + 4
= 20

Jetzt muss diese Summe noch durch 4 geteilt werden: 20 : 4 = 5

Die Anzahl der Fahrten des Vaters ist also 5