Aufgabenbeispiele von Grundrechenarten
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Addition (Kopfrechnen)
Beispiel:
Berechne die Summe (im Kopf): 304 + 490
304 + 490 = 794
Addition (schriftlich)
Beispiel:
Berechne die Summe schriftlich: 6323 + 25002 + 6514 + 8335
6323 + 25002 + 6514 + 8335 = 46174
Schriftliche Rechnung:
6 | 3 | 2 | 3 | ||
+ | 2 | 5 | 0 | 0 | 2 |
+ | 6 | 5 | 1 | 4 | |
+ | 8 | 3 | 3 | 5 | |
2 | 1 | 1 | |||
4 | 6 | 1 | 7 | 4 |
Subtraktion (Kopfrechnen)
Beispiel:
Berechne die Differenz (im Kopf): 167 - 150
167 - 150 = 17
Subtraktion (schriftlich)
Beispiel:
Berechne die Differenz schriftlich: 68253 - 42622 - 6199
68253 - 42622 - 6199 = 19432
Schriftliche Rechnung:
6 | 8 | 2 | 5 | 3 | |
- | 4 | 2 | 6 | 2 | 2 |
- | 6 | 1 | 9 | 9 | |
1 | 1 | 1 | 1 | ||
1 | 9 | 4 | 3 | 2 |
Multiplikation (Kopfrechnen)
Beispiel:
Berechne das Produkt (im Kopf): 6 ⋅ 11
6 ⋅ 11 = 66
Multiplikation (schriftlich)
Beispiel:
Berechne das Produkt (schriftlich oder im Kopf): 99 ⋅ 274
99 ⋅ 274 = 27126
Schriftliche Rechnung:
9 | 9 | ⋅ | 2 | 7 | 4 | ||
1 | 9 | 8 | |||||
6 | 9 | 3 | |||||
3 | 9 | 6 | |||||
1 | 2 | 1 | |||||
2 | 7 | 1 | 2 | 6 |
Division (Kopfrechnen)
Beispiel:
Berechne den Quotienten im Kopf: 0 : 16
0 : 16 = 0
Division (schriftlich)
Beispiel:
Berechne den Quotienten (schriftlich oder im Kopf): 15584 : 16
15584 : 16 = 974
Schriftliche Rechnung:
1 | 5 | 5 | 8 | 4 | : | 1 | 6 | = | 9 | 7 | 4 | ||
- | 1 | 4 | 4 | ||||||||||
1 | 1 | 8 | |||||||||||
- | 1 | 1 | 2 | ||||||||||
6 | 4 | ||||||||||||
- | 6 | 4 | |||||||||||
0 |
Min bzw. Max einer Summe
Beispiel:
Verteile die sechs Ziffern 4, 1, 8, 3, 9, 7 auf zwei dreistellige Zahlen so, dass ihre Summe am größten wird.
Berechne dann diese Summe.
Wir sortieren zuerst die Ziffern in absteigender Reihenfolge:
9, 8, 7, 4, 3, 1
Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst große Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden größten Ziffern und an der Einer-Stelle die beiden kleinsten Ziffern stehen.
Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.
Wir verteilen also die Ziffern in absteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
973 + 841 = 1814
Kästchenaufgabe (Rückwärts rechnen)
Beispiel:
Was muss in das Kästchen?
2 ⋅ ⬜ = 22
2 ⋅ ⬜ = 22
Wenn man das Kästchen mit 2 multipliziert, erhält man 22. Also muss man doch das Kästchen erhalten, wenn man 22 durch 2 dividiert.
Somit gilt:
⬜ = 22 : 2 = 11
Das Kästchen muss also 11 sein, denn es gilt:
2 ⋅
Rückwärtsrechnen verbal
Beispiel:
Mit welcher Zahl muss man 2 multiplizieren, um 38 zu erhalten?
"Mit welcher Zahl muss man 2 multiplizieren, um 38 zu erhalten?" bedeutet ja:
2 ⋅ ⬜ = 38
Wenn man das Kästchen mit 2 multipliziert, erhält man 38. Also muss man doch das Kästchen erhalten, wenn man 38 durch 2 dividiert.
Somit gilt:
⬜ = 38 : 2 = 19
Das Kästchen muss also 19 sein, denn es gilt:
2 ⋅
Anwendungen
Beispiel:
In einem Landkreis gibt es 2 Gemeinden mit 6000 Einwohner, 4 Gemeinden mit 2000 Einwohner und 2 Gemeinden mit 7000 Einwohner. Die Kreisstadt ist mit 45000 Einwohner die größte Gemeinde im Landkreis. Wie viele Einwohner hat der Landkreis?
Wir berechnen erst die Summe (von den Produkten) aus der Aufgabe:
2⋅ 6000 + 4⋅ 2000 + 2⋅ 7000 + 45000
= 12000 + 8000 + 14000 + 45000
= 79000