Aufgabenbeispiele von Grundrechenarten
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Addition (Kopfrechnen)
Beispiel:
Berechne die Summe (im Kopf): 172 + 387
172 + 387 = 559
Addition (schriftlich)
Beispiel:
Berechne die Summe schriftlich: 54314 + 25222 + 30641 + 76826
54314 + 25222 + 30641 + 76826 = 187003
Schriftliche Rechnung:
| 5 | 4 | 3 | 1 | 4 | |
| + | 2 | 5 | 2 | 2 | 2 |
| + | 3 | 0 | 6 | 4 | 1 |
| + | 7 | 6 | 8 | 2 | 6 |
| 1 | 1 | 2 | 1 | 1 | |
| 1 | 8 | 7 | 0 | 0 | 3 |
Subtraktion (Kopfrechnen)
Beispiel:
Berechne die Differenz (im Kopf): 88 - 59
88 - 59 = 29
Subtraktion (schriftlich)
Beispiel:
Berechne die Differenz schriftlich: 46078 - 32837
46078 - 32837 = 13241
Schriftliche Rechnung:
| 4 | 6 | 0 | 7 | 8 | |
| - | 3 | 2 | 8 | 3 | 7 |
| 1 | |||||
| 1 | 3 | 2 | 4 | 1 |
Multiplikation (Kopfrechnen)
Beispiel:
Berechne das Produkt (im Kopf): 3 ⋅ 0
3 ⋅ 0 = 0
Multiplikation (schriftlich)
Beispiel:
Berechne das Produkt (schriftlich oder im Kopf): 868 ⋅ 202
868 ⋅ 202 = 175336
Schriftliche Rechnung:
| 8 | 6 | 8 | ⋅ | 2 | 0 | 2 | ||
| 1 | 7 | 3 | 6 | |||||
| 0 | ||||||||
| 1 | 7 | 3 | 6 | |||||
| 1 | ||||||||
| 1 | 7 | 5 | 3 | 3 | 6 |
Division (Kopfrechnen)
Beispiel:
Berechne den Quotienten im Kopf: 160 : 20
160 : 20 = 8
Division (schriftlich)
Beispiel:
Berechne den Quotienten (schriftlich oder im Kopf): 18382 : 91
18382 : 91 = 202
Schriftliche Rechnung:
| 1 | 8 | 3 | 8 | 2 | : | 9 | 1 | = | 2 | 0 | 2 | ||
| - | 1 | 8 | 2 | ||||||||||
| 1 | 8 | ||||||||||||
| - | 0 | ||||||||||||
| 1 | 8 | 2 | |||||||||||
| - | 1 | 8 | 2 | ||||||||||
| 0 |
Min bzw. Max einer Summe
Beispiel:
Verteile die sechs Ziffern 8, 5, 9, 2, 6, 4 auf zwei dreistellige Zahlen so, dass ihre Summe am größten wird.
Berechne dann diese Summe.
Wir sortieren zuerst die Ziffern in absteigender Reihenfolge:
9, 8, 6, 5, 4, 2
Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst große Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden größten Ziffern und an der Einer-Stelle die beiden kleinsten Ziffern stehen.
Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.
Wir verteilen also die Ziffern in absteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
964 + 852 = 1816
Kästchenaufgabe (Rückwärts rechnen)
Beispiel:
Was muss in das Kästchen?
⬜ ⋅
⬜ ⋅
Wenn man das Kästchen mit 2 multipliziert, erhält man 28. Also muss man doch das Kästchen erhalten, wenn man 28 durch 2 dividiert.
Somit gilt:
⬜ = 28 : 2 = 14
Das Kästchen muss also 14 sein, denn es gilt:
14 ⋅
Rückwärtsrechnen verbal
Beispiel:
Wie viel muss man von 42 subtrahieren, um 22 zu erhalten?
"Wie viel muss man von 42 subtrahieren, um 22 zu erhalten?" bedeutet ja:
42 - ⬜ = 22
Wenn man von 42 das Kästchen subtrahiert, erhält man 22. Also muss doch das Kästchen gerade der Unterschied zwischen 42 und 22 sein.
Somit gilt:
⬜ = 42 - 22 = 20
Das Kästchen muss also 20 sein, denn es gilt:
42 -
Anwendungen
Beispiel:
In einem Landkreis gibt es 4 Gemeinden mit 3000 Einwohner, 2 Gemeinden mit 4000 Einwohner und 2 Gemeinden mit 4000 Einwohner. Die Kreisstadt ist mit 45000 Einwohner die größte Gemeinde im Landkreis. Wie viele Einwohner hat der Landkreis?
Wir berechnen erst die Summe (von den Produkten) aus der Aufgabe:
4⋅ 3000 + 2⋅ 4000 + 2⋅ 4000 + 45000
= 12000 + 8000 + 8000 + 45000
= 73000
