Aufgabenbeispiele von Linearfaktordarstellung

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(5|0).

Also muss der Funktionsterm a · ( x -1 ) · ( x -5 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a=-1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit f(x)= - ( x -1 ) ( x -5 ) .

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 +2x -3 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 +2x -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Der Funktionterm ( x +3 ) ( x -1 ) hat nun also genau die gleichen Nullstellen wie f(x)= x 2 +2x -3 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist f(x)= ( x +3 ) ( x -1 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(3|0).

Also muss der Funktionsterm a · x · ( x -3 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(1|2).
Es gilt dann ja: f(1)=2,
also f(1)= a · 1 · ( 1 -3 ) = -2a =2.

Hieraus ergibt sich a=-1.

Der gesuchte faktorisierte Funktionsterm ist somit f(x)= - x ( x -3 ) .

Linearfakt. am Graph (a≠1) + Ausmultipl.

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist das Schaubild einer Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in der Form f(x) = ax² + bx + c an.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(0|0).

Also muss der Funktionsterm a · ( x +3 ) · x sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|1).
Es gilt dann ja: f(-2)=1,
also f(-2)= a · ( -2 +3 ) · ( -2 ) = -2a =1.

Hieraus ergibt sich a= - 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit f(x)= - 1 2 ( x +3 ) x .

Jetzt muss der faktorisierte Term eben noch ausmultipliziert werden:

f(x)= - 1 2 ( x +3 ) x

= - 1 2 ( x · x + 3 · x )

= - 1 2 ( x · x +3x )

= - 1 2 ( x 2 +3x )

= - 1 2 x 2 - 3 2 x

Der gesuchte Funktionsterm in der Form f(x) = ax² + bx + c ist somit f(x)= - 1 2 x 2 - 3 2 x

Linearfakt. aus Term (a≠1)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 2 +6x +9 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

-3 x 2 +6x +9 = 0 |:3

- x 2 +2x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · ( -1 ) · 3 2( -1 )

x1,2 = -2 ± 4 +12 -2

x1,2 = -2 ± 16 -2

x1 = -2 + 16 -2 = -2 +4 -2 = 2 -2 = -1

x2 = -2 - 16 -2 = -2 -4 -2 = -6 -2 = 3

Für jedes a hat also der Funktionterm a · ( x +1 ) · ( x -3 ) genau die gleichen Nullstellen wie f(x)= -3 x 2 +6x +9 .

Wenn wir nun ausmultiplizieren, erkennenn wir, dass a genau der Koeffizient vor den x² bei unserer Originalfunktion sein muss:

f(x)= a · ( x +1 ) · ( x -3 )

= a · ( x · x + x · ( -3 ) + 1 · x + 1 · ( -3 ) )

= a · ( x · x -3x + x -3 )

= a · ( x 2 -2x -3 )

Für a = -3 ergibt sich also tatsächlich:

-3( x 2 -2x -3 ) = -3 x 2 +6x +9 = f(x)

Der gesuchte Funktionsterm in faktorisierter Darstellung ist also: f(x)= -3 ( x +1 ) ( x -3 )