Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 -2x -63 = 0

Lösung einblenden

x 2 -2x -63 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -63 ) 21

x1,2 = +2 ± 4 +252 2

x1,2 = +2 ± 256 2

x1 = 2 + 256 2 = 2 +16 2 = 18 2 = 9

x2 = 2 - 256 2 = 2 -16 2 = -14 2 = -7

L={ -7 ; 9 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-10x + x 2 +26 = 0

Lösung einblenden

x 2 -10x +26 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +10 ± ( -10 ) 2 -4 · 1 · 26 21

x1,2 = +10 ± 100 -104 2

x1,2 = +10 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

3 x 2 -60x +303 = 0

Lösung einblenden
3 x 2 -60x +303 = 0 |:3

x 2 -20x +101 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +20 ± ( -20 ) 2 -4 · 1 · 101 21

x1,2 = +20 ± 400 -404 2

x1,2 = +20 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

3 x 2 -2x +5 = ( 2x +4 ) ( x -2 ) -4x +28

Lösung einblenden
3 x 2 -2x +5 = ( 2x +4 ) ( x -2 ) -4x +28
3 x 2 -2x +5 = 2 x 2 -8 -4x +28
3 x 2 -2x +5 = 2 x 2 -4x +20 | -2 x 2 +4x -20

x 2 +2x -15 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

x1,2 = -2 ± 4 +60 2

x1,2 = -2 ± 64 2

x1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

x2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

L={ -5 ; 3 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -2 x 2 +16x -32 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-2 x 2 +16x -32 = 0 |:2

- x 2 +8x -16 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -8 ± 8 2 -4 · ( -1 ) · ( -16 ) 2( -1 )

x1,2 = -8 ± 64 -64 -2

x1,2 = -8 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -8 -2 = 4

L={ 4 }

4 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( 4 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -3 x 2 -2x -9
und
g(x)= -4 x 2 -4x -1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-3 x 2 -2x -9 = -4 x 2 -4x -1 | +4 x 2 +4x +1

x 2 +2x -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -8 ) 21

x1,2 = -2 ± 4 +32 2

x1,2 = -2 ± 36 2

x1 = -2 + 36 2 = -2 +6 2 = 4 2 = 2

x2 = -2 - 36 2 = -2 -6 2 = -8 2 = -4

L={ -4 ; 2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = -4 ( -4 ) 2 -4( -4 ) -1 = -416 +16 -1 = -64 +16 -1 = -49

g( 2 ) = -4 2 2 -42 -1 = -44 -8 -1 = -16 -8 -1 = -25

Die Schnittpunkte sind also S1( -4 | -49 ) und S2( 2 | -25 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 -12x -13 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 2 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 4 nach oben gehen. Die Steigung ist also m=-4.

Der Term der abgebildeten Geraden ist also y= -4x +2 oder f(x)= -4x +2 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4x +2 = - x 2 -12x -13 | + x 2 +12x +13

x 2 +8x +15 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -8 ± 8 2 -4 · 1 · 15 21

x1,2 = -8 ± 64 -60 2

x1,2 = -8 ± 4 2

x1 = -8 + 4 2 = -8 +2 2 = -6 2 = -3

x2 = -8 - 4 2 = -8 -2 2 = -10 2 = -5

L={ -5 ; -3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = - ( -5 ) 2 -12( -5 ) -13 = -25 +60 -13 = 22

g( -3 ) = - ( -3 ) 2 -12( -3 ) -13 = -9 +36 -13 = 14

Die Schnittpunkte sind also S1( -5 | 22 ) und S2( -3 | 14 ).