Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

16 x 2 +48x +37 = 0

Lösung einblenden

16 x 2 +48x +37 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -48 ± 48 2 -4 · 16 · 37 216

x1,2 = -48 ± 2304 -2368 32

x1,2 = -48 ± ( -64 ) 32

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

49 + x 2 = 14x

Lösung einblenden
x 2 +49 = 14x | -14x

x 2 -14x +49 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +14 ± ( -14 ) 2 -4 · 1 · 49 21

x1,2 = +14 ± 196 -196 2

x1,2 = +14 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 14 2 = 7

L={ 7 }

7 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 -3x +2 = 0

Lösung einblenden

x 2 -3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

x1,2 = +3 ± 9 -8 2

x1,2 = +3 ± 1 2

x1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

x2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

L={ 1 ; 2 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

10 x 2 -3x +2 = ( 9x -4 ) ( x -8 ) +78x -34

Lösung einblenden
10 x 2 -3x +2 = ( 9x -4 ) ( x -8 ) +78x -34
10 x 2 -3x +2 = 9 x 2 -76x +32 +78x -34
10 x 2 -3x +2 = 9 x 2 +2x -2 | -9 x 2 -2x +2

x 2 -5x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

x1,2 = +5 ± 25 -16 2

x1,2 = +5 ± 9 2

x1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

x2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

L={ 1 ; 4 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +18x +81 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +18x +81 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -18 ± 18 2 -4 · 1 · 81 21

x1,2 = -18 ± 324 -324 2

x1,2 = -18 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -18 2 = -9

L={ -9 }

-9 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( -9 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 6 x 2 +7x +29
und
g(x)= 5 x 2 -3x +4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

6 x 2 +7x +29 = 5 x 2 -3x +4 | -5 x 2 +3x -4

x 2 +10x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -10 ± 10 2 -4 · 1 · 25 21

x1,2 = -10 ± 100 -100 2

x1,2 = -10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 2 = -5

L={ -5 }

-5 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = 5 ( -5 ) 2 -3( -5 ) +4 = 525 +15 +4 = 125 +15 +4 = 144

Der einzige Schnittpunkt ist also S( -5 | 144 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 +8x -22 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 2 nach oben gehen. Die Steigung ist also m=-2.

Der Term der abgebildeten Geraden ist also y= -2x +3 oder f(x)= -2x +3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2x +3 = - x 2 +8x -22 | + x 2 -8x +22

x 2 -10x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +10 ± ( -10 ) 2 -4 · 1 · 25 21

x1,2 = +10 ± 100 -100 2

x1,2 = +10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 10 2 = 5

L={ 5 }

5 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 5 ) = - 5 2 +85 -22 = -25 +40 -22 = -7

Der einzige Schnittpunkt ist also S( 5 | -7 ).