Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 +16x +63 = 0

Lösung einblenden

x 2 +16x +63 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -16 ± 16 2 -4 · 1 · 63 21

x1,2 = -16 ± 256 -252 2

x1,2 = -16 ± 4 2

x1 = -16 + 4 2 = -16 +2 2 = -14 2 = -7

x2 = -16 - 4 2 = -16 -2 2 = -18 2 = -9

L={ -9 ; -7 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

100 + x 2 +20x = 0

Lösung einblenden

x 2 +20x +100 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -20 ± 20 2 -4 · 1 · 100 21

x1,2 = -20 ± 400 -400 2

x1,2 = -20 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -20 2 = -10

L={ -10 }

-10 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

-2 x 2 -36x -164 = 0

Lösung einblenden
-2 x 2 -36x -164 = 0 |:2

- x 2 -18x -82 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +18 ± ( -18 ) 2 -4 · ( -1 ) · ( -82 ) 2( -1 )

x1,2 = +18 ± 324 -328 -2

x1,2 = +18 ± ( -4 ) -2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-3 x 2 +5x -5 = ( -4x -4 ) ( x -6 ) -15x -4

Lösung einblenden
-3 x 2 +5x -5 = ( -4x -4 ) ( x -6 ) -15x -4
-3 x 2 +5x -5 = -4 x 2 +20x +24 -15x -4
-3 x 2 +5x -5 = -4 x 2 +5x +20 | +5
-3 x 2 +5x = -4 x 2 +5x +25 | +4 x 2 -5x
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

L={ -5 ; 5 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -8x +17 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -8x +17 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 17 21

x1,2 = +8 ± 64 -68 2

x1,2 = +8 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Es gibt also keine Schnittpunkte mit der x-Achse (Nullstellen).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -4 x 2 -9x -6
und
g(x)= -5 x 2 -5x -1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4 x 2 -9x -6 = -5 x 2 -5x -1 | +5 x 2 +5x +1

x 2 -4x -5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -5 ) 21

x1,2 = +4 ± 16 +20 2

x1,2 = +4 ± 36 2

x1 = 4 + 36 2 = 4 +6 2 = 10 2 = 5

x2 = 4 - 36 2 = 4 -6 2 = -2 2 = -1

L={ -1 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -1 ) = -5 ( -1 ) 2 -5( -1 ) -1 = -51 +5 -1 = -5 +5 -1 = -1

g( 5 ) = -5 5 2 -55 -1 = -525 -25 -1 = -125 -25 -1 = -151

Die Schnittpunkte sind also S1( -1 | -1 ) und S2( 5 | -151 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + 13 4 x -4 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 4 Einheit(en) nach rechts geht, so muss man 3 nach oben gehen. Die Steigung ist also m= - 3 4 .

Der Term der abgebildeten Geraden ist also y= - 3 4 x -1 oder f(x)= - 3 4 x -1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- 3 4 x -1 = - x 2 + 13 4 x -4 |⋅ 4
4( - 3 4 x -1 ) = 4( - x 2 + 13 4 x -4 )
-3x -4 = -4 x 2 +13x -16 | +4 x 2 -13x +16
4 x 2 -16x +12 = 0 |:4

x 2 -4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 3 21

x1,2 = +4 ± 16 -12 2

x1,2 = +4 ± 4 2

x1 = 4 + 4 2 = 4 +2 2 = 6 2 = 3

x2 = 4 - 4 2 = 4 -2 2 = 2 2 = 1

L={ 1 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 1 ) = - 1 2 + 13 4 1 -4 = -1 + 13 4 -4 = - 7 4

g( 3 ) = - 3 2 + 13 4 3 -4 = -9 + 39 4 -4 = - 13 4

Die Schnittpunkte sind also S1( 1 | - 7 4 ) und S2( 3 | - 13 4 ).