Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 -10x +25 = 0

Lösung einblenden

x 2 -10x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +10 ± ( -10 ) 2 -4 · 1 · 25 21

x1,2 = +10 ± 100 -100 2

x1,2 = +10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 10 2 = 5

L={ 5 }

5 ist 2-fache Lösung!

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-21x +2 x 2 +54 = 0

Lösung einblenden

2 x 2 -21x +54 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +21 ± ( -21 ) 2 -4 · 2 · 54 22

x1,2 = +21 ± 441 -432 4

x1,2 = +21 ± 9 4

x1 = 21 + 9 4 = 21 +3 4 = 24 4 = 6

x2 = 21 - 9 4 = 21 -3 4 = 18 4 = 4,5

L={ 4,5 ; 6 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

3 x 2 -33x +54 = 0

Lösung einblenden
3 x 2 -33x +54 = 0 |:3

x 2 -11x +18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +11 ± ( -11 ) 2 -4 · 1 · 18 21

x1,2 = +11 ± 121 -72 2

x1,2 = +11 ± 49 2

x1 = 11 + 49 2 = 11 +7 2 = 18 2 = 9

x2 = 11 - 49 2 = 11 -7 2 = 4 2 = 2

L={ 2 ; 9 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-2 x 2 +9x +3 = ( -3x -9 ) ( x -9 ) -7x -75

Lösung einblenden
-2 x 2 +9x +3 = ( -3x -9 ) ( x -9 ) -7x -75
-2 x 2 +9x +3 = -3 x 2 +18x +81 -7x -75
-2 x 2 +9x +3 = -3 x 2 +11x +6 | +3 x 2 -11x -6

x 2 -2x -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

x1,2 = +2 ± 4 +12 2

x1,2 = +2 ± 16 2

x1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

x2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

L={ -1 ; 3 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= - x 2 +6x -10 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

- x 2 +6x -10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · ( -1 ) · ( -10 ) 2( -1 )

x1,2 = -6 ± 36 -40 -2

x1,2 = -6 ± ( -4 ) -2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Es gibt also keine Schnittpunkte mit der x-Achse (Nullstellen).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -4 x 2 +11x +12
und
g(x)= -5 x 2 +5x +3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4 x 2 +11x +12 = -5 x 2 +5x +3 | +5 x 2 -5x -3

x 2 +6x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · 1 · 9 21

x1,2 = -6 ± 36 -36 2

x1,2 = -6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -6 2 = -3

L={ -3 }

-3 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = -5 ( -3 ) 2 +5( -3 ) +3 = -59 -15 +3 = -45 -15 +3 = -57

Der einzige Schnittpunkt ist also S( -3 | -57 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 +8x -13 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=1.

Der Term der abgebildeten Geraden ist also y= x -1 oder f(x)= x -1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x -1 = - x 2 +8x -13 | + x 2 -8x +13

x 2 -7x +12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 12 21

x1,2 = +7 ± 49 -48 2

x1,2 = +7 ± 1 2

x1 = 7 + 1 2 = 7 +1 2 = 8 2 = 4

x2 = 7 - 1 2 = 7 -1 2 = 6 2 = 3

L={ 3 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = - 3 2 +83 -13 = -9 +24 -13 = 2

g( 4 ) = - 4 2 +84 -13 = -16 +32 -13 = 3

Die Schnittpunkte sind also S1( 3 | 2 ) und S2( 4 | 3 ).