Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

4 x 2 -16x +17 = 0

Lösung einblenden

4 x 2 -16x +17 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +16 ± ( -16 ) 2 -4 · 4 · 17 24

x1,2 = +16 ± 256 -272 8

x1,2 = +16 ± ( -16 ) 8

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

81 + x 2 +18x = 0

Lösung einblenden

x 2 +18x +81 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -18 ± 18 2 -4 · 1 · 81 21

x1,2 = -18 ± 324 -324 2

x1,2 = -18 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -18 2 = -9

L={ -9 }

-9 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 - 33 4 x + 35 4 = 0

Lösung einblenden
x 2 - 33 4 x + 35 4 = 0 |⋅ 4
4( x 2 - 33 4 x + 35 4 ) = 0

4 x 2 -33x +35 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +33 ± ( -33 ) 2 -4 · 4 · 35 24

x1,2 = +33 ± 1089 -560 8

x1,2 = +33 ± 529 8

x1 = 33 + 529 8 = 33 +23 8 = 56 8 = 7

x2 = 33 - 529 8 = 33 -23 8 = 10 8 = 1,25

L={ 1,25 ; 7 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

10 x 2 -3x -2 = ( 9x +9 ) ( x +7 ) -72x -55

Lösung einblenden
10 x 2 -3x -2 = ( 9x +9 ) ( x +7 ) -72x -55
10 x 2 -3x -2 = 9 x 2 +72x +63 -72x -55
10 x 2 -3x -2 = 9 x 2 +8 | -9 x 2 -8

x 2 -3x -10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -10 ) 21

x1,2 = +3 ± 9 +40 2

x1,2 = +3 ± 49 2

x1 = 3 + 49 2 = 3 +7 2 = 10 2 = 5

x2 = 3 - 49 2 = 3 -7 2 = -4 2 = -2

L={ -2 ; 5 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +4x +3 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 3 21

x1,2 = -4 ± 16 -12 2

x1,2 = -4 ± 4 2

x1 = -4 + 4 2 = -4 +2 2 = -2 2 = -1

x2 = -4 - 4 2 = -4 -2 2 = -6 2 = -3

L={ -3 ; -1 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -3 |0) und N2( -1 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 5 x 2 -4x -4
und
g(x)= 4 x 2 -2x -5 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

5 x 2 -4x -4 = 4 x 2 -2x -5 | -4 x 2 +2x +5

x 2 -2x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

x1,2 = +2 ± 4 -4 2

x1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 2 2 = 1

L={ 1 }

1 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 1 ) = 4 1 2 -21 -5 = 41 -2 -5 = 4 -2 -5 = -3

Der einzige Schnittpunkt ist also S( 1 | -3 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 -2x -4 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -2 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=1.

Der Term der abgebildeten Geraden ist also y= x -2 oder f(x)= x -2 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x -2 = - x 2 -2x -4 | + x 2 +2x +4

x 2 +3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · 2 21

x1,2 = -3 ± 9 -8 2

x1,2 = -3 ± 1 2

x1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

x2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

L={ -2 ; -1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = - ( -2 ) 2 -2( -2 ) -4 = -4 +4 -4 = -4

g( -1 ) = - ( -1 ) 2 -2( -1 ) -4 = -1 +2 -4 = -3

Die Schnittpunkte sind also S1( -2 | -4 ) und S2( -1 | -3 ).