Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 -50 = 0

Lösung einblenden
2 x 2 -50 = 0 | +50
2 x 2 = 50 |:2
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

L={ -5 ; 5 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

24x +16 x 2 = -9

Lösung einblenden
16 x 2 +24x = -9 | +9

16 x 2 +24x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -24 ± 24 2 -4 · 16 · 9 216

x1,2 = -24 ± 576 -576 32

x1,2 = -24 ± 0 32

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -24 32 = - 3 4

L={ - 3 4 }

- 3 4 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

2 x 2 -18x +36 = 0

Lösung einblenden
2 x 2 -18x +36 = 0 |:2

x 2 -9x +18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +9 ± ( -9 ) 2 -4 · 1 · 18 21

x1,2 = +9 ± 81 -72 2

x1,2 = +9 ± 9 2

x1 = 9 + 9 2 = 9 +3 2 = 12 2 = 6

x2 = 9 - 9 2 = 9 -3 2 = 6 2 = 3

L={ 3 ; 6 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-3 x 2 -6x -7 = ( -4x -5 ) ( x +9 ) +38x +42

Lösung einblenden
-3 x 2 -6x -7 = ( -4x -5 ) ( x +9 ) +38x +42
-3 x 2 -6x -7 = -4 x 2 -41x -45 +38x +42
-3 x 2 -6x -7 = -4 x 2 -3x -3 | +4 x 2 +3x +3

x 2 -3x -4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -4 ) 21

x1,2 = +3 ± 9 +16 2

x1,2 = +3 ± 25 2

x1 = 3 + 25 2 = 3 +5 2 = 8 2 = 4

x2 = 3 - 25 2 = 3 -5 2 = -2 2 = -1

L={ -1 ; 4 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +6x +9 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +6x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · 1 · 9 21

x1,2 = -6 ± 36 -36 2

x1,2 = -6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -6 2 = -3

L={ -3 }

-3 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( -3 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 3 x 2 - x +10
und
g(x)= 2 x 2 +5x +1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3 x 2 - x +10 = 2 x 2 +5x +1 | -2 x 2 -5x -1

x 2 -6x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 9 21

x1,2 = +6 ± 36 -36 2

x1,2 = +6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 6 2 = 3

L={ 3 }

3 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = 2 3 2 +53 +1 = 29 +15 +1 = 18 +15 +1 = 34

Der einzige Schnittpunkt ist also S( 3 | 34 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 +22 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 2 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=1.

Der Term der abgebildeten Geraden ist also y= x +2 oder f(x)= x +2 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x +2 = - x 2 +22 | + x 2 -22

x 2 + x -20 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -20 ) 21

x1,2 = -1 ± 1 +80 2

x1,2 = -1 ± 81 2

x1 = -1 + 81 2 = -1 +9 2 = 8 2 = 4

x2 = -1 - 81 2 = -1 -9 2 = -10 2 = -5

L={ -5 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = - ( -5 ) 2 +22 = -25 +22 = -3

g( 4 ) = - 4 2 +22 = -16 +22 = 6

Die Schnittpunkte sind also S1( -5 | -3 ) und S2( 4 | 6 ).