Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 -1 = 0

Lösung einblenden
x 2 -1 = 0 | +1
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

L={ -1 ; 1 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-15x +7 = -2 x 2

Lösung einblenden
-15x +7 = -2 x 2 | +2 x 2

2 x 2 -15x +7 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +15 ± ( -15 ) 2 -4 · 2 · 7 22

x1,2 = +15 ± 225 -56 4

x1,2 = +15 ± 169 4

x1 = 15 + 169 4 = 15 +13 4 = 28 4 = 7

x2 = 15 - 169 4 = 15 -13 4 = 2 4 = 0,5

L={ 0,5 ; 7 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 -2x +1 = 0

Lösung einblenden

x 2 -2x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

x1,2 = +2 ± 4 -4 2

x1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 2 2 = 1

L={ 1 }

1 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

5 x 2 +9x +9 = ( 4x +2 ) ( x -2 ) +15x +38

Lösung einblenden
5 x 2 +9x +9 = ( 4x +2 ) ( x -2 ) +15x +38
5 x 2 +9x +9 = 4 x 2 -6x -4 +15x +38
5 x 2 +9x +9 = 4 x 2 +9x +34 | -9
5 x 2 +9x = 4 x 2 +9x +25 | -4 x 2 -9x
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

L={ -5 ; 5 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -18x +82 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -18x +82 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +18 ± ( -18 ) 2 -4 · 1 · 82 21

x1,2 = +18 ± 324 -328 2

x1,2 = +18 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Es gibt also keine Schnittpunkte mit der x-Achse (Nullstellen).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -3x +2
und
g(x)= - x 2 -5x +1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-3x +2 = - x 2 -5x +1 | + x 2 +5x -1

x 2 +2x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · 1 21

x1,2 = -2 ± 4 -4 2

x1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -2 2 = -1

L={ -1 }

-1 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -1 ) = - ( -1 ) 2 -5( -1 ) +1 = -1 +5 +1 = 5

Der einzige Schnittpunkt ist also S( -1 | 5 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 - 4 3 x .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -2 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 3 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= - 1 3 .

Der Term der abgebildeten Geraden ist also y= - 1 3 x -2 oder f(x)= - 1 3 x -2 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- 1 3 x -2 = - x 2 - 4 3 x |⋅ 3
3( - 1 3 x -2 ) = 3( - x 2 - 4 3 x )
-x -6 = -3 x 2 -4x | +3 x 2 +4x
3 x 2 +3x -6 = 0 |:3

x 2 + x -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

x1,2 = -1 ± 1 +8 2

x1,2 = -1 ± 9 2

x1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

x2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

L={ -2 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = - ( -2 ) 2 - 4 3 ( -2 ) = -4 + 8 3 = - 4 3

g( 1 ) = - 1 2 - 4 3 1 = -1 - 4 3 = - 7 3

Die Schnittpunkte sind also S1( -2 | - 4 3 ) und S2( 1 | - 7 3 ).