Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

5 x 2 +51x +54 = 0

Lösung einblenden

5 x 2 +51x +54 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -51 ± 51 2 -4 · 5 · 54 25

x1,2 = -51 ± 2601 -1080 10

x1,2 = -51 ± 1521 10

x1 = -51 + 1521 10 = -51 +39 10 = -12 10 = -1,2

x2 = -51 - 1521 10 = -51 -39 10 = -90 10 = -9

L={ -9 ; -1,2 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

32x +16 x 2 = -16

Lösung einblenden
16 x 2 +32x = -16 | +16
16 x 2 +32x +16 = 0 |:16

x 2 +2x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · 1 21

x1,2 = -2 ± 4 -4 2

x1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -2 2 = -1

L={ -1 }

-1 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 -8x +16 = 0

Lösung einblenden

x 2 -8x +16 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 16 21

x1,2 = +8 ± 64 -64 2

x1,2 = +8 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 8 2 = 4

L={ 4 }

4 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

6 x 2 +8x +6 = ( 5x +8 ) ( x -1 ) +4x +20

Lösung einblenden
6 x 2 +8x +6 = ( 5x +8 ) ( x -1 ) +4x +20
6 x 2 +8x +6 = 5 x 2 +3x -8 +4x +20
6 x 2 +8x +6 = 5 x 2 +7x +12 | -5 x 2 -7x -12

x 2 + x -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

x1,2 = -1 ± 1 +24 2

x1,2 = -1 ± 25 2

x1 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

x2 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

L={ -3 ; 2 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -9x + 85 4 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -9x + 85 4 = 0 |⋅ 4
4( x 2 -9x + 85 4 ) = 0

4 x 2 -36x +85 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +36 ± ( -36 ) 2 -4 · 4 · 85 24

x1,2 = +36 ± 1296 -1360 8

x1,2 = +36 ± ( -64 ) 8

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Es gibt also keine Schnittpunkte mit der x-Achse (Nullstellen).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2 x 2 -3x -12
und
g(x)= -3 x 2 -5x -4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2 x 2 -3x -12 = -3 x 2 -5x -4 | +3 x 2 +5x +4

x 2 +2x -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -8 ) 21

x1,2 = -2 ± 4 +32 2

x1,2 = -2 ± 36 2

x1 = -2 + 36 2 = -2 +6 2 = 4 2 = 2

x2 = -2 - 36 2 = -2 -6 2 = -8 2 = -4

L={ -4 ; 2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = -3 ( -4 ) 2 -5( -4 ) -4 = -316 +20 -4 = -48 +20 -4 = -32

g( 2 ) = -3 2 2 -52 -4 = -34 -10 -4 = -12 -10 -4 = -26

Die Schnittpunkte sind also S1( -4 | -32 ) und S2( 2 | -26 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 -4x +9 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=-1.

Der Term der abgebildeten Geraden ist also y= -x -1 oder f(x)= -x -1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-x -1 = - x 2 -4x +9 | + x 2 +4x -9

x 2 +3x -10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · ( -10 ) 21

x1,2 = -3 ± 9 +40 2

x1,2 = -3 ± 49 2

x1 = -3 + 49 2 = -3 +7 2 = 4 2 = 2

x2 = -3 - 49 2 = -3 -7 2 = -10 2 = -5

L={ -5 ; 2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = - ( -5 ) 2 -4( -5 ) +9 = -25 +20 +9 = 4

g( 2 ) = - 2 2 -42 +9 = -4 -8 +9 = -3

Die Schnittpunkte sind also S1( -5 | 4 ) und S2( 2 | -3 ).