Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

5 x 2 -50x +80 = 0

Lösung einblenden
5 x 2 -50x +80 = 0 |:5

x 2 -10x +16 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +10 ± ( -10 ) 2 -4 · 1 · 16 21

x1,2 = +10 ± 100 -64 2

x1,2 = +10 ± 36 2

x1 = 10 + 36 2 = 10 +6 2 = 16 2 = 8

x2 = 10 - 36 2 = 10 -6 2 = 4 2 = 2

L={ 2 ; 8 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-x + x 2 = 56

Lösung einblenden
x 2 - x = 56 | -56

x 2 - x -56 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -56 ) 21

x1,2 = +1 ± 1 +224 2

x1,2 = +1 ± 225 2

x1 = 1 + 225 2 = 1 +15 2 = 16 2 = 8

x2 = 1 - 225 2 = 1 -15 2 = -14 2 = -7

L={ -7 ; 8 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

-3 x 2 +48x -192 = 0

Lösung einblenden
-3 x 2 +48x -192 = 0 |:3

- x 2 +16x -64 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -16 ± 16 2 -4 · ( -1 ) · ( -64 ) 2( -1 )

x1,2 = -16 ± 256 -256 -2

x1,2 = -16 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -16 -2 = 8

L={ 8 }

8 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

3 x 2 +2x +4 = ( 2x +7 ) ( x -9 ) +11x +75

Lösung einblenden
3 x 2 +2x +4 = ( 2x +7 ) ( x -9 ) +11x +75
3 x 2 +2x +4 = 2 x 2 -11x -63 +11x +75
3 x 2 +2x +4 = 2 x 2 +12 | -2 x 2 -12

x 2 +2x -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -8 ) 21

x1,2 = -2 ± 4 +32 2

x1,2 = -2 ± 36 2

x1 = -2 + 36 2 = -2 +6 2 = 4 2 = 2

x2 = -2 - 36 2 = -2 -6 2 = -8 2 = -4

L={ -4 ; 2 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -3 x 2 +21x +24 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-3 x 2 +21x +24 = 0 |:3

- x 2 +7x +8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -7 ± 7 2 -4 · ( -1 ) · 8 2( -1 )

x1,2 = -7 ± 49 +32 -2

x1,2 = -7 ± 81 -2

x1 = -7 + 81 -2 = -7 +9 -2 = 2 -2 = -1

x2 = -7 - 81 -2 = -7 -9 -2 = -16 -2 = 8

L={ -1 ; 8 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -1 |0) und N2( 8 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2 x 2 -8x +13
und
g(x)= -3 x 2 -2x +3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2 x 2 -8x +13 = -3 x 2 -2x +3 | +3 x 2 +2x -3

x 2 -6x +10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 10 21

x1,2 = +6 ± 36 -40 2

x1,2 = +6 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

Es gibt also keine Schnittpunkte.

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 +2x .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 2 nach oben gehen. Die Steigung ist also m=2.

Der Term der abgebildeten Geraden ist also y= 2x -1 oder f(x)= 2x -1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

2x -1 = - x 2 +2x | +1 + x 2 -2x
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

L={ -1 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -1 ) = - ( -1 ) 2 +2( -1 ) = -1 -2 = -3

g( 1 ) = - 1 2 +21 = -1 +2 = 1

Die Schnittpunkte sind also S1( -1 | -3 ) und S2( 1 | 1 ).