Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 -13x +15 = 0

Lösung einblenden

2 x 2 -13x +15 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +13 ± ( -13 ) 2 -4 · 2 · 15 22

x1,2 = +13 ± 169 -120 4

x1,2 = +13 ± 49 4

x1 = 13 + 49 4 = 13 +7 4 = 20 4 = 5

x2 = 13 - 49 4 = 13 -7 4 = 6 4 = 1,5

L={ 1,5 ; 5 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-100 + x 2 = 0

Lösung einblenden
-100 + x 2 = 0
x 2 -100 = 0 | +100
x 2 = 100 | 2
x1 = - 100 = -10
x2 = 100 = 10

L={ -10 ; 10 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

2 x 2 +32x +130 = 0

Lösung einblenden
2 x 2 +32x +130 = 0 |:2

x 2 +16x +65 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -16 ± 16 2 -4 · 1 · 65 21

x1,2 = -16 ± 256 -260 2

x1,2 = -16 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-4 x 2 - x +5 = ( -5x -5 ) ( x +3 ) +11x +4

Lösung einblenden
-4 x 2 - x +5 = ( -5x -5 ) ( x +3 ) +11x +4
-4 x 2 - x +5 = -5 x 2 -20x -15 +11x +4
-4 x 2 - x +5 = -5 x 2 -9x -11 | +5 x 2 +9x +11

x 2 +8x +16 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -8 ± 8 2 -4 · 1 · 16 21

x1,2 = -8 ± 64 -64 2

x1,2 = -8 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -8 2 = -4

L={ -4 }

-4 ist 2-fache Lösung!

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -2 x 2 -20x -50 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-2 x 2 -20x -50 = 0 |:2

- x 2 -10x -25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +10 ± ( -10 ) 2 -4 · ( -1 ) · ( -25 ) 2( -1 )

x1,2 = +10 ± 100 -100 -2

x1,2 = +10 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 10 -2 = -5

L={ -5 }

-5 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( -5 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -4 x 2 -2x +8
und
g(x)= -5 x 2 +4x -2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4 x 2 -2x +8 = -5 x 2 +4x -2 | +5 x 2 -4x +2

x 2 -6x +10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 10 21

x1,2 = +6 ± 36 -40 2

x1,2 = +6 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

Es gibt also keine Schnittpunkte.

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 - 13 4 x +7 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 4 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= - 1 4 .

Der Term der abgebildeten Geraden ist also y= - 1 4 x +3 oder f(x)= - 1 4 x +3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- 1 4 x +3 = - x 2 - 13 4 x +7 |⋅ 4
4( - 1 4 x +3 ) = 4( - x 2 - 13 4 x +7 )
-x +12 = -4 x 2 -13x +28 | +4 x 2 +13x -28
4 x 2 +12x -16 = 0 |:4

x 2 +3x -4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

x1,2 = -3 ± 9 +16 2

x1,2 = -3 ± 25 2

x1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

x2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

L={ -4 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = - ( -4 ) 2 - 13 4 ( -4 ) +7 = -16 +13 +7 = 4

g( 1 ) = - 1 2 - 13 4 1 +7 = -1 - 13 4 +7 = 11 4

Die Schnittpunkte sind also S1( -4 | 4 ) und S2( 1 | 11 4 ).