Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 -16x +64 = 0

Lösung einblenden

x 2 -16x +64 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +16 ± ( -16 ) 2 -4 · 1 · 64 21

x1,2 = +16 ± 256 -256 2

x1,2 = +16 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 16 2 = 8

L={ 8 }

8 ist 2-fache Lösung!

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-24x +36 +4 x 2 = 0

Lösung einblenden
4 x 2 -24x +36 = 0 |:4

x 2 -6x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 9 21

x1,2 = +6 ± 36 -36 2

x1,2 = +6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 6 2 = 3

L={ 3 }

3 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

- x 2 +10x -25 = 0

Lösung einblenden

- x 2 +10x -25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -10 ± 10 2 -4 · ( -1 ) · ( -25 ) 2( -1 )

x1,2 = -10 ± 100 -100 -2

x1,2 = -10 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 -2 = 5

L={ 5 }

5 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-3 x 2 +8x +4 = ( -4x +4 ) ( x +4 ) +16x -15

Lösung einblenden
-3 x 2 +8x +4 = ( -4x +4 ) ( x +4 ) +16x -15
-3 x 2 +8x +4 = -4 x 2 -12x +16 +16x -15
-3 x 2 +8x +4 = -4 x 2 +4x +1 | +4 x 2 -4x -1

x 2 +4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 3 21

x1,2 = -4 ± 16 -12 2

x1,2 = -4 ± 4 2

x1 = -4 + 4 2 = -4 +2 2 = -2 2 = -1

x2 = -4 - 4 2 = -4 -2 2 = -6 2 = -3

L={ -3 ; -1 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +16x +64 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +16x +64 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -16 ± 16 2 -4 · 1 · 64 21

x1,2 = -16 ± 256 -256 2

x1,2 = -16 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -16 2 = -8

L={ -8 }

-8 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( -8 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 4x -4
und
g(x)= - x 2 +5x +2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

4x -4 = - x 2 +5x +2 | + x 2 -5x -2

x 2 - x -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -6 ) 21

x1,2 = +1 ± 1 +24 2

x1,2 = +1 ± 25 2

x1 = 1 + 25 2 = 1 +5 2 = 6 2 = 3

x2 = 1 - 25 2 = 1 -5 2 = -4 2 = -2

L={ -2 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = - ( -2 ) 2 +5( -2 ) +2 = -4 -10 +2 = -12

g( 3 ) = - 3 2 +53 +2 = -9 +15 +2 = 8

Die Schnittpunkte sind also S1( -2 | -12 ) und S2( 3 | 8 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 -3x +2 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=1.

Der Term der abgebildeten Geraden ist also y= x -3 oder f(x)= x -3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x -3 = - x 2 -3x +2 | + x 2 +3x -2

x 2 +4x -5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · ( -5 ) 21

x1,2 = -4 ± 16 +20 2

x1,2 = -4 ± 36 2

x1 = -4 + 36 2 = -4 +6 2 = 2 2 = 1

x2 = -4 - 36 2 = -4 -6 2 = -10 2 = -5

L={ -5 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = - ( -5 ) 2 -3( -5 ) +2 = -25 +15 +2 = -8

g( 1 ) = - 1 2 -31 +2 = -1 -3 +2 = -2

Die Schnittpunkte sind also S1( -5 | -8 ) und S2( 1 | -2 ).