Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 +6x +10 = 0

Lösung einblenden

x 2 +6x +10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · 1 · 10 21

x1,2 = -6 ± 36 -40 2

x1,2 = -6 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

2 x 2 +27 -15x = 0

Lösung einblenden

2 x 2 -15x +27 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +15 ± ( -15 ) 2 -4 · 2 · 27 22

x1,2 = +15 ± 225 -216 4

x1,2 = +15 ± 9 4

x1 = 15 + 9 4 = 15 +3 4 = 18 4 = 4,5

x2 = 15 - 9 4 = 15 -3 4 = 12 4 = 3

L={ 3 ; 4,5 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 +3x -18 = 0

Lösung einblenden

x 2 +3x -18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · ( -18 ) 21

x1,2 = -3 ± 9 +72 2

x1,2 = -3 ± 81 2

x1 = -3 + 81 2 = -3 +9 2 = 6 2 = 3

x2 = -3 - 81 2 = -3 -9 2 = -12 2 = -6

L={ -6 ; 3 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-3 x 2 +7x -7 = ( -4x +4 ) ( x +8 ) +33x -31

Lösung einblenden
-3 x 2 +7x -7 = ( -4x +4 ) ( x +8 ) +33x -31
-3 x 2 +7x -7 = -4 x 2 -28x +32 +33x -31
-3 x 2 +7x -7 = -4 x 2 +5x +1 | +4 x 2 -5x -1

x 2 +2x -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -8 ) 21

x1,2 = -2 ± 4 +32 2

x1,2 = -2 ± 36 2

x1 = -2 + 36 2 = -2 +6 2 = 4 2 = 2

x2 = -2 - 36 2 = -2 -6 2 = -8 2 = -4

L={ -4 ; 2 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -3 x 2 -36x -108 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-3 x 2 -36x -108 = 0 |:3

- x 2 -12x -36 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +12 ± ( -12 ) 2 -4 · ( -1 ) · ( -36 ) 2( -1 )

x1,2 = +12 ± 144 -144 -2

x1,2 = +12 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 12 -2 = -6

L={ -6 }

-6 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( -6 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 3 x 2 -5x -1
und
g(x)= 2 x 2 -2x -3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3 x 2 -5x -1 = 2 x 2 -2x -3 | -2 x 2 +2x +3

x 2 -3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

x1,2 = +3 ± 9 -8 2

x1,2 = +3 ± 1 2

x1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

x2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

L={ 1 ; 2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 1 ) = 2 1 2 -21 -3 = 21 -2 -3 = 2 -2 -3 = -3

g( 2 ) = 2 2 2 -22 -3 = 24 -4 -3 = 8 -4 -3 = 1

Die Schnittpunkte sind also S1( 1 | -3 ) und S2( 2 | 1 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 -7x -24 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 3 nach oben gehen. Die Steigung ist also m=3.

Der Term der abgebildeten Geraden ist also y= 3x +1 oder f(x)= 3x +1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3x +1 = - x 2 -7x -24 | + x 2 +7x +24

x 2 +10x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -10 ± 10 2 -4 · 1 · 25 21

x1,2 = -10 ± 100 -100 2

x1,2 = -10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 2 = -5

L={ -5 }

-5 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = - ( -5 ) 2 -7( -5 ) -24 = -25 +35 -24 = -14

Der einzige Schnittpunkt ist also S( -5 | -14 ).