Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 -14x +49 = 0

Lösung einblenden

x 2 -14x +49 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +14 ± ( -14 ) 2 -4 · 1 · 49 21

x1,2 = +14 ± 196 -196 2

x1,2 = +14 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 14 2 = 7

L={ 7 }

7 ist 2-fache Lösung!

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

x 2 +20x +100 = 0

Lösung einblenden

x 2 +20x +100 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -20 ± 20 2 -4 · 1 · 100 21

x1,2 = -20 ± 400 -400 2

x1,2 = -20 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -20 2 = -10

L={ -10 }

-10 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 + 17 2 x +4 = 0

Lösung einblenden
x 2 + 17 2 x +4 = 0 |⋅ 2
2( x 2 + 17 2 x +4 ) = 0

2 x 2 +17x +8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -17 ± 17 2 -4 · 2 · 8 22

x1,2 = -17 ± 289 -64 4

x1,2 = -17 ± 225 4

x1 = -17 + 225 4 = -17 +15 4 = -2 4 = -0,5

x2 = -17 - 225 4 = -17 -15 4 = -32 4 = -8

L={ -8 ; -0,5 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-7 x 2 +7x +2 = ( -8x +7 ) ( x +9 ) +71x -55

Lösung einblenden
-7 x 2 +7x +2 = ( -8x +7 ) ( x +9 ) +71x -55
-7 x 2 +7x +2 = -8 x 2 -65x +63 +71x -55
-7 x 2 +7x +2 = -8 x 2 +6x +8 | +8 x 2 -6x -8

x 2 + x -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

x1,2 = -1 ± 1 +24 2

x1,2 = -1 ± 25 2

x1 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

x2 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

L={ -3 ; 2 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +14x +40 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +14x +40 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -14 ± 14 2 -4 · 1 · 40 21

x1,2 = -14 ± 196 -160 2

x1,2 = -14 ± 36 2

x1 = -14 + 36 2 = -14 +6 2 = -8 2 = -4

x2 = -14 - 36 2 = -14 -6 2 = -20 2 = -10

L={ -10 ; -4 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -10 |0) und N2( -4 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2 x 2 +6x +3
und
g(x)= -3 x 2 +2x -1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2 x 2 +6x +3 = -3 x 2 +2x -1 | +3 x 2 -2x +1

x 2 +4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = -3 ( -2 ) 2 +2( -2 ) -1 = -34 -4 -1 = -12 -4 -1 = -17

Der einzige Schnittpunkt ist also S( -2 | -17 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 - 3 2 x +24 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 2 Einheit(en) nach rechts geht, so muss man 3 nach oben gehen. Die Steigung ist also m= - 3 2 .

Der Term der abgebildeten Geraden ist also y= - 3 2 x -1 oder f(x)= - 3 2 x -1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- 3 2 x -1 = - x 2 - 3 2 x +24 | +1
- 3 2 x = - x 2 - 3 2 x +25 | + x 2 + 3 2 x
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

L={ -5 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = - ( -5 ) 2 - 3 2 ( -5 ) +24 = -25 + 15 2 +24 = 13 2

g( 5 ) = - 5 2 - 3 2 5 +24 = -25 - 15 2 +24 = - 17 2

Die Schnittpunkte sind also S1( -5 | 13 2 ) und S2( 5 | - 17 2 ).