Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 +21x +49 = 0

Lösung einblenden

2 x 2 +21x +49 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -21 ± 21 2 -4 · 2 · 49 22

x1,2 = -21 ± 441 -392 4

x1,2 = -21 ± 49 4

x1 = -21 + 49 4 = -21 +7 4 = -14 4 = -3,5

x2 = -21 - 49 4 = -21 -7 4 = -28 4 = -7

L={ -7 ; -3,5 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

8 +4 x 2 -12x = 0

Lösung einblenden
4 x 2 -12x +8 = 0 |:4

x 2 -3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

x1,2 = +3 ± 9 -8 2

x1,2 = +3 ± 1 2

x1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

x2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

L={ 1 ; 2 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

-3 x 2 +12x -12 = 0

Lösung einblenden
-3 x 2 +12x -12 = 0 |:3

- x 2 +4x -4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · ( -1 ) · ( -4 ) 2( -1 )

x1,2 = -4 ± 16 -16 -2

x1,2 = -4 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 -2 = 2

L={ 2 }

2 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-4 x 2 -2x +6 = ( -5x +3 ) ( x -8 ) -50x +26

Lösung einblenden
-4 x 2 -2x +6 = ( -5x +3 ) ( x -8 ) -50x +26
-4 x 2 -2x +6 = -5 x 2 +43x -24 -50x +26
-4 x 2 -2x +6 = -5 x 2 -7x +2 | +5 x 2 +7x -2

x 2 +5x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -5 ± 5 2 -4 · 1 · 4 21

x1,2 = -5 ± 25 -16 2

x1,2 = -5 ± 9 2

x1 = -5 + 9 2 = -5 +3 2 = -2 2 = -1

x2 = -5 - 9 2 = -5 -3 2 = -8 2 = -4

L={ -4 ; -1 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 - 1 2 x - 1 2 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 - 1 2 x - 1 2 = 0 |⋅ 2
2( x 2 - 1 2 x - 1 2 ) = 0

2 x 2 - x -1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 2 · ( -1 ) 22

x1,2 = +1 ± 1 +8 4

x1,2 = +1 ± 9 4

x1 = 1 + 9 4 = 1 +3 4 = 4 4 = 1

x2 = 1 - 9 4 = 1 -3 4 = -2 4 = -0,5

L={ -0,5 ; 1 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -0,5 |0) und N2( 1 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 9x +6
und
g(x)= - x 2 +5x +1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

9x +6 = - x 2 +5x +1 | + x 2 -5x -1

x 2 +4x +5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 5 21

x1,2 = -4 ± 16 -20 2

x1,2 = -4 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

Es gibt also keine Schnittpunkte.

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 -5x -6 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=-1.

Der Term der abgebildeten Geraden ist also y= -x -3 oder f(x)= -x -3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-x -3 = - x 2 -5x -6 | + x 2 +5x +6

x 2 +4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 3 21

x1,2 = -4 ± 16 -12 2

x1,2 = -4 ± 4 2

x1 = -4 + 4 2 = -4 +2 2 = -2 2 = -1

x2 = -4 - 4 2 = -4 -2 2 = -6 2 = -3

L={ -3 ; -1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = - ( -3 ) 2 -5( -3 ) -6 = -9 +15 -6 = 0

g( -1 ) = - ( -1 ) 2 -5( -1 ) -6 = -1 +5 -6 = -2

Die Schnittpunkte sind also S1( -3 |0) und S2( -1 | -2 ).