Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 -17x +21 = 0

Lösung einblenden

2 x 2 -17x +21 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +17 ± ( -17 ) 2 -4 · 2 · 21 22

x1,2 = +17 ± 289 -168 4

x1,2 = +17 ± 121 4

x1 = 17 + 121 4 = 17 +11 4 = 28 4 = 7

x2 = 17 - 121 4 = 17 -11 4 = 6 4 = 1,5

L={ 1,5 ; 7 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

x 2 +16 = -8x

Lösung einblenden
x 2 +16 = -8x | +8x

x 2 +8x +16 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -8 ± 8 2 -4 · 1 · 16 21

x1,2 = -8 ± 64 -64 2

x1,2 = -8 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -8 2 = -4

L={ -4 }

-4 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

-2 x 2 -40x -200 = 0

Lösung einblenden
-2 x 2 -40x -200 = 0 |:2

- x 2 -20x -100 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +20 ± ( -20 ) 2 -4 · ( -1 ) · ( -100 ) 2( -1 )

x1,2 = +20 ± 400 -400 -2

x1,2 = +20 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 20 -2 = -10

L={ -10 }

-10 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

10 x 2 -9x +7 = ( 9x +4 ) ( x +1 ) -19x +1

Lösung einblenden
10 x 2 -9x +7 = ( 9x +4 ) ( x +1 ) -19x +1
10 x 2 -9x +7 = 9 x 2 +13x +4 -19x +1
10 x 2 -9x +7 = 9 x 2 -6x +5 | -9 x 2 +6x -5

x 2 -3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

x1,2 = +3 ± 9 -8 2

x1,2 = +3 ± 1 2

x1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

x2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

L={ 1 ; 2 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -2 x 2 +32x -128 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-2 x 2 +32x -128 = 0 |:2

- x 2 +16x -64 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -16 ± 16 2 -4 · ( -1 ) · ( -64 ) 2( -1 )

x1,2 = -16 ± 256 -256 -2

x1,2 = -16 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -16 -2 = 8

L={ 8 }

8 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( 8 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 3 x 2 -4x -3
und
g(x)= 2 x 2 -2x -5 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3 x 2 -4x -3 = 2 x 2 -2x -5 | -2 x 2 +2x +5

x 2 -2x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · 2 21

x1,2 = +2 ± 4 -8 2

x1,2 = +2 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

Es gibt also keine Schnittpunkte.

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 - x +15 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 0 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=1 .

Der Term der abgebildeten Geraden ist also y= x oder f(x)= x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x = - x 2 - x +15 | + x 2 + x -15

x 2 +2x -15 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

x1,2 = -2 ± 4 +60 2

x1,2 = -2 ± 64 2

x1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

x2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

L={ -5 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = - ( -5 ) 2 - ( -5 ) +15 = -25 +5 +15 = -5

g( 3 ) = - 3 2 - 3 +15 = -9 -3 +15 = 3

Die Schnittpunkte sind also S1( -5 | -5 ) und S2( 3 | 3 ).