Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 -8x +17 = 0

Lösung einblenden

x 2 -8x +17 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 17 21

x1,2 = +8 ± 64 -68 2

x1,2 = +8 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

42 +4 x 2 -34x = 0

Lösung einblenden
4 x 2 -34x +42 = 0 |:2

2 x 2 -17x +21 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +17 ± ( -17 ) 2 -4 · 2 · 21 22

x1,2 = +17 ± 289 -168 4

x1,2 = +17 ± 121 4

x1 = 17 + 121 4 = 17 +11 4 = 28 4 = 7

x2 = 17 - 121 4 = 17 -11 4 = 6 4 = 1,5

L={ 1,5 ; 7 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 -6x +9 = 0

Lösung einblenden

x 2 -6x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 9 21

x1,2 = +6 ± 36 -36 2

x1,2 = +6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 6 2 = 3

L={ 3 }

3 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

5 x 2 +2x +1 = ( 4x -2 ) ( x -1 ) +16x -17

Lösung einblenden
5 x 2 +2x +1 = ( 4x -2 ) ( x -1 ) +16x -17
5 x 2 +2x +1 = 4 x 2 -6x +2 +16x -17
5 x 2 +2x +1 = 4 x 2 +10x -15 | -4 x 2 -10x +15

x 2 -8x +16 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 16 21

x1,2 = +8 ± 64 -64 2

x1,2 = +8 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 8 2 = 4

L={ 4 }

4 ist 2-fache Lösung!

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= 3 x 2 +12x -96 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

3 x 2 +12x -96 = 0 |:3

x 2 +4x -32 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · ( -32 ) 21

x1,2 = -4 ± 16 +128 2

x1,2 = -4 ± 144 2

x1 = -4 + 144 2 = -4 +12 2 = 8 2 = 4

x2 = -4 - 144 2 = -4 -12 2 = -16 2 = -8

L={ -8 ; 4 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -8 |0) und N2( 4 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2 x 2 +4x +2
und
g(x)= -3 x 2 - x -4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2 x 2 +4x +2 = -3 x 2 - x -4 | +3 x 2 + x +4

x 2 +5x +6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -5 ± 5 2 -4 · 1 · 6 21

x1,2 = -5 ± 25 -24 2

x1,2 = -5 ± 1 2

x1 = -5 + 1 2 = -5 +1 2 = -4 2 = -2

x2 = -5 - 1 2 = -5 -1 2 = -6 2 = -3

L={ -3 ; -2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = -3 ( -3 ) 2 - ( -3 ) -4 = -39 +3 -4 = -27 +3 -4 = -28

g( -2 ) = -3 ( -2 ) 2 - ( -2 ) -4 = -34 +2 -4 = -12 +2 -4 = -14

Die Schnittpunkte sind also S1( -3 | -28 ) und S2( -2 | -14 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 -2x -7 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 4 nach oben gehen. Die Steigung ist also m=4.

Der Term der abgebildeten Geraden ist also y= 4x +1 oder f(x)= 4x +1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

4x +1 = - x 2 -2x -7 | + x 2 +2x +7

x 2 +6x +8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · 1 · 8 21

x1,2 = -6 ± 36 -32 2

x1,2 = -6 ± 4 2

x1 = -6 + 4 2 = -6 +2 2 = -4 2 = -2

x2 = -6 - 4 2 = -6 -2 2 = -8 2 = -4

L={ -4 ; -2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = - ( -4 ) 2 -2( -4 ) -7 = -16 +8 -7 = -15

g( -2 ) = - ( -2 ) 2 -2( -2 ) -7 = -4 +4 -7 = -7

Die Schnittpunkte sind also S1( -4 | -15 ) und S2( -2 | -7 ).