Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

4 x 2 +32x +64 = 0

Lösung einblenden
4 x 2 +32x +64 = 0 |:4

x 2 +8x +16 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -8 ± 8 2 -4 · 1 · 16 21

x1,2 = -8 ± 64 -64 2

x1,2 = -8 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -8 2 = -4

L={ -4 }

-4 ist 2-fache Lösung!

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

18x +2 x 2 = -28

Lösung einblenden
2 x 2 +18x = -28 | +28
2 x 2 +18x +28 = 0 |:2

x 2 +9x +14 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -9 ± 9 2 -4 · 1 · 14 21

x1,2 = -9 ± 81 -56 2

x1,2 = -9 ± 25 2

x1 = -9 + 25 2 = -9 +5 2 = -4 2 = -2

x2 = -9 - 25 2 = -9 -5 2 = -14 2 = -7

L={ -7 ; -2 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 +4x +4 = 0

Lösung einblenden

x 2 +4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

9x -9 = ( -x -1 ) ( x -5 ) +7x -14

Lösung einblenden
9x -9 = ( -x -1 ) ( x -5 ) +7x -14
9x -9 = - x 2 +4x +5 +7x -14
9x -9 = - x 2 +11x -9 | +9
9x = - x 2 +11x | - ( - x 2 +11x )
x 2 +9x -11x = 0
x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

L={0; 2 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -9x + 81 4 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -9x + 81 4 = 0 |⋅ 4
4( x 2 -9x + 81 4 ) = 0

4 x 2 -36x +81 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +36 ± ( -36 ) 2 -4 · 4 · 81 24

x1,2 = +36 ± 1296 -1296 8

x1,2 = +36 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 36 8 = 9 2

L={ 9 2 }

9 2 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( 9 2 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 4 x 2 +3x -16
und
g(x)= 3 x 2 +2x -4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

4 x 2 +3x -16 = 3 x 2 +2x -4 | -3 x 2 -2x +4

x 2 + x -12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -12 ) 21

x1,2 = -1 ± 1 +48 2

x1,2 = -1 ± 49 2

x1 = -1 + 49 2 = -1 +7 2 = 6 2 = 3

x2 = -1 - 49 2 = -1 -7 2 = -8 2 = -4

L={ -4 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = 3 ( -4 ) 2 +2( -4 ) -4 = 316 -8 -4 = 48 -8 -4 = 36

g( 3 ) = 3 3 2 +23 -4 = 39 +6 -4 = 27 +6 -4 = 29

Die Schnittpunkte sind also S1( -4 | 36 ) und S2( 3 | 29 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 -9x -7 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 3 nach oben gehen. Die Steigung ist also m=-3.

Der Term der abgebildeten Geraden ist also y= -3x +1 oder f(x)= -3x +1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-3x +1 = - x 2 -9x -7 | + x 2 +9x +7

x 2 +6x +8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · 1 · 8 21

x1,2 = -6 ± 36 -32 2

x1,2 = -6 ± 4 2

x1 = -6 + 4 2 = -6 +2 2 = -4 2 = -2

x2 = -6 - 4 2 = -6 -2 2 = -8 2 = -4

L={ -4 ; -2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = - ( -4 ) 2 -9( -4 ) -7 = -16 +36 -7 = 13

g( -2 ) = - ( -2 ) 2 -9( -2 ) -7 = -4 +18 -7 = 7

Die Schnittpunkte sind also S1( -4 | 13 ) und S2( -2 | 7 ).