Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

4 x 2 +12x +9 = 0

Lösung einblenden

4 x 2 +12x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -12 ± 12 2 -4 · 4 · 9 24

x1,2 = -12 ± 144 -144 8

x1,2 = -12 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -12 8 = - 3 2

L={ - 3 2 }

- 3 2 ist 2-fache Lösung!

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-30x +10 +25 x 2 = 0

Lösung einblenden
25 x 2 -30x +10 = 0 |:5

5 x 2 -6x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 5 · 2 25

x1,2 = +6 ± 36 -40 10

x1,2 = +6 ± ( -4 ) 10

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 - 19 2 x -5 = 0

Lösung einblenden
x 2 - 19 2 x -5 = 0 |⋅ 2
2( x 2 - 19 2 x -5 ) = 0

2 x 2 -19x -10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +19 ± ( -19 ) 2 -4 · 2 · ( -10 ) 22

x1,2 = +19 ± 361 +80 4

x1,2 = +19 ± 441 4

x1 = 19 + 441 4 = 19 +21 4 = 40 4 = 10

x2 = 19 - 441 4 = 19 -21 4 = -2 4 = -0,5

L={ -0,5 ; 10 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-5 x 2 +3x +3 = ( -6x +4 ) ( x -2 ) -12x +23

Lösung einblenden
-5 x 2 +3x +3 = ( -6x +4 ) ( x -2 ) -12x +23
-5 x 2 +3x +3 = -6 x 2 +16x -8 -12x +23
-5 x 2 +3x +3 = -6 x 2 +4x +15 | +6 x 2 -4x -15

x 2 - x -12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -12 ) 21

x1,2 = +1 ± 1 +48 2

x1,2 = +1 ± 49 2

x1 = 1 + 49 2 = 1 +7 2 = 8 2 = 4

x2 = 1 - 49 2 = 1 -7 2 = -6 2 = -3

L={ -3 ; 4 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +9x -10 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +9x -10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -9 ± 9 2 -4 · 1 · ( -10 ) 21

x1,2 = -9 ± 81 +40 2

x1,2 = -9 ± 121 2

x1 = -9 + 121 2 = -9 +11 2 = 2 2 = 1

x2 = -9 - 121 2 = -9 -11 2 = -20 2 = -10

L={ -10 ; 1 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -10 |0) und N2( 1 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 5 x 2 -9x +20
und
g(x)= 4 x 2 - x +5 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

5 x 2 -9x +20 = 4 x 2 - x +5 | -4 x 2 + x -5

x 2 -8x +15 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 15 21

x1,2 = +8 ± 64 -60 2

x1,2 = +8 ± 4 2

x1 = 8 + 4 2 = 8 +2 2 = 10 2 = 5

x2 = 8 - 4 2 = 8 -2 2 = 6 2 = 3

L={ 3 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = 4 3 2 - 3 +5 = 49 -3 +5 = 36 -3 +5 = 38

g( 5 ) = 4 5 2 - 5 +5 = 425 -5 +5 = 100 -5 +5 = 100

Die Schnittpunkte sind also S1( 3 | 38 ) und S2( 5 | 100 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 +8x -15 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=1.

Der Term der abgebildeten Geraden ist also y= x -3 oder f(x)= x -3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x -3 = - x 2 +8x -15 | + x 2 -8x +15

x 2 -7x +12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 12 21

x1,2 = +7 ± 49 -48 2

x1,2 = +7 ± 1 2

x1 = 7 + 1 2 = 7 +1 2 = 8 2 = 4

x2 = 7 - 1 2 = 7 -1 2 = 6 2 = 3

L={ 3 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = - 3 2 +83 -15 = -9 +24 -15 = 0

g( 4 ) = - 4 2 +84 -15 = -16 +32 -15 = 1

Die Schnittpunkte sind also S1( 3 |0) und S2( 4 | 1 ).