Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 +21x +40 = 0

Lösung einblenden

2 x 2 +21x +40 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -21 ± 21 2 -4 · 2 · 40 22

x1,2 = -21 ± 441 -320 4

x1,2 = -21 ± 121 4

x1 = -21 + 121 4 = -21 +11 4 = -10 4 = -2,5

x2 = -21 - 121 4 = -21 -11 4 = -32 4 = -8

L={ -8 ; -2,5 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-18x +81 = - x 2

Lösung einblenden
-18x +81 = - x 2 | + x 2

x 2 -18x +81 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +18 ± ( -18 ) 2 -4 · 1 · 81 21

x1,2 = +18 ± 324 -324 2

x1,2 = +18 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 18 2 = 9

L={ 9 }

9 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 -2x +1 = 0

Lösung einblenden

x 2 -2x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

x1,2 = +2 ± 4 -4 2

x1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 2 2 = 1

L={ 1 }

1 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

9 x 2 +3x -6 = ( 8x +8 ) ( x +3 ) -26x -32

Lösung einblenden
9 x 2 +3x -6 = ( 8x +8 ) ( x +3 ) -26x -32
9 x 2 +3x -6 = 8 x 2 +32x +24 -26x -32
9 x 2 +3x -6 = 8 x 2 +6x -8 | -8 x 2 -6x +8

x 2 -3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

x1,2 = +3 ± 9 -8 2

x1,2 = +3 ± 1 2

x1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

x2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

L={ 1 ; 2 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -3 x 2 +39x -90 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-3 x 2 +39x -90 = 0 |:3

- x 2 +13x -30 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -13 ± 13 2 -4 · ( -1 ) · ( -30 ) 2( -1 )

x1,2 = -13 ± 169 -120 -2

x1,2 = -13 ± 49 -2

x1 = -13 + 49 -2 = -13 +7 -2 = -6 -2 = 3

x2 = -13 - 49 -2 = -13 -7 -2 = -20 -2 = 10

L={ 3 ; 10 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( 3 |0) und N2( 10 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2 x 2 -3x -1
und
g(x)= -3 x 2 -5x -2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2 x 2 -3x -1 = -3 x 2 -5x -2 | +3 x 2 +5x +2

x 2 +2x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · 1 21

x1,2 = -2 ± 4 -4 2

x1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -2 2 = -1

L={ -1 }

-1 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -1 ) = -3 ( -1 ) 2 -5( -1 ) -2 = -31 +5 -2 = -3 +5 -2 = 0

Der einzige Schnittpunkt ist also S( -1 |0).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 - 21 2 x -28 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 2 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= - 1 2 .

Der Term der abgebildeten Geraden ist also y= - 1 2 x -3 oder f(x)= - 1 2 x -3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- 1 2 x -3 = - x 2 - 21 2 x -28 |⋅ 2
2( - 1 2 x -3 ) = 2( - x 2 - 21 2 x -28 )
-x -6 = -2 x 2 -21x -56 | +2 x 2 +21x +56
2 x 2 +20x +50 = 0 |:2

x 2 +10x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -10 ± 10 2 -4 · 1 · 25 21

x1,2 = -10 ± 100 -100 2

x1,2 = -10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 2 = -5

L={ -5 }

-5 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = - ( -5 ) 2 - 21 2 ( -5 ) -28 = -25 + 105 2 -28 = - 1 2

Der einzige Schnittpunkt ist also S( -5 | - 1 2 ).