Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

4 x 2 -40x +101 = 0

Lösung einblenden

4 x 2 -40x +101 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +40 ± ( -40 ) 2 -4 · 4 · 101 24

x1,2 = +40 ± 1600 -1616 8

x1,2 = +40 ± ( -16 ) 8

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-4x -45 + x 2 = 0

Lösung einblenden

x 2 -4x -45 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -45 ) 21

x1,2 = +4 ± 16 +180 2

x1,2 = +4 ± 196 2

x1 = 4 + 196 2 = 4 +14 2 = 18 2 = 9

x2 = 4 - 196 2 = 4 -14 2 = -10 2 = -5

L={ -5 ; 9 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 +9x + 85 4 = 0

Lösung einblenden
x 2 +9x + 85 4 = 0 |⋅ 4
4( x 2 +9x + 85 4 ) = 0

4 x 2 +36x +85 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -36 ± 36 2 -4 · 4 · 85 24

x1,2 = -36 ± 1296 -1360 8

x1,2 = -36 ± ( -64 ) 8

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

9 x 2 -3x -7 = ( 8x -2 ) ( x +9 ) -72x +23

Lösung einblenden
9 x 2 -3x -7 = ( 8x -2 ) ( x +9 ) -72x +23
9 x 2 -3x -7 = 8 x 2 +70x -18 -72x +23
9 x 2 -3x -7 = 8 x 2 -2x +5 | -8 x 2 +2x -5

x 2 - x -12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -12 ) 21

x1,2 = +1 ± 1 +48 2

x1,2 = +1 ± 49 2

x1 = 1 + 49 2 = 1 +7 2 = 8 2 = 4

x2 = 1 - 49 2 = 1 -7 2 = -6 2 = -3

L={ -3 ; 4 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -2 x 2 +12x -20 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-2 x 2 +12x -20 = 0 |:2

- x 2 +6x -10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · ( -1 ) · ( -10 ) 2( -1 )

x1,2 = -6 ± 36 -40 -2

x1,2 = -6 ± ( -4 ) -2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Es gibt also keine Schnittpunkte mit der x-Achse (Nullstellen).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 2x +13
und
g(x)= - x 2 -4x +4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

2x +13 = - x 2 -4x +4 | + x 2 +4x -4

x 2 +6x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · 1 · 9 21

x1,2 = -6 ± 36 -36 2

x1,2 = -6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -6 2 = -3

L={ -3 }

-3 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = - ( -3 ) 2 -4( -3 ) +4 = -9 +12 +4 = 7

Der einzige Schnittpunkt ist also S( -3 | 7 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 - 5 2 x +13 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -2 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 2 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= - 1 2 .

Der Term der abgebildeten Geraden ist also y= - 1 2 x -2 oder f(x)= - 1 2 x -2 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- 1 2 x -2 = - x 2 - 5 2 x +13 |⋅ 2
2( - 1 2 x -2 ) = 2( - x 2 - 5 2 x +13 )
-x -4 = -2 x 2 -5x +26 | +2 x 2 +5x -26
2 x 2 +4x -30 = 0 |:2

x 2 +2x -15 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

x1,2 = -2 ± 4 +60 2

x1,2 = -2 ± 64 2

x1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

x2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

L={ -5 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = - ( -5 ) 2 - 5 2 ( -5 ) +13 = -25 + 25 2 +13 = 1 2

g( 3 ) = - 3 2 - 5 2 3 +13 = -9 - 15 2 +13 = - 7 2

Die Schnittpunkte sind also S1( -5 | 1 2 ) und S2( 3 | - 7 2 ).