Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 +9x -35 = 0

Lösung einblenden

2 x 2 +9x -35 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -9 ± 9 2 -4 · 2 · ( -35 ) 22

x1,2 = -9 ± 81 +280 4

x1,2 = -9 ± 361 4

x1 = -9 + 361 4 = -9 +19 4 = 10 4 = 2,5

x2 = -9 - 361 4 = -9 -19 4 = -28 4 = -7

L={ -7 ; 2,5 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

10 +16 x 2 +24x = 0

Lösung einblenden
16 x 2 +24x +10 = 0 |:2

8 x 2 +12x +5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -12 ± 12 2 -4 · 8 · 5 28

x1,2 = -12 ± 144 -160 16

x1,2 = -12 ± ( -16 ) 16

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 +2x +2 = 0

Lösung einblenden

x 2 +2x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · 2 21

x1,2 = -2 ± 4 -8 2

x1,2 = -2 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

9 x 2 - x +6 = ( 8x -7 ) ( x +7 ) -57x +43

Lösung einblenden
9 x 2 - x +6 = ( 8x -7 ) ( x +7 ) -57x +43
9 x 2 - x +6 = 8 x 2 +49x -49 -57x +43
9 x 2 - x +6 = 8 x 2 -8x -6 | -8 x 2 +8x +6

x 2 +7x +12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -7 ± 7 2 -4 · 1 · 12 21

x1,2 = -7 ± 49 -48 2

x1,2 = -7 ± 1 2

x1 = -7 + 1 2 = -7 +1 2 = -6 2 = -3

x2 = -7 - 1 2 = -7 -1 2 = -8 2 = -4

L={ -4 ; -3 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -4x -32 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -4x -32 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -32 ) 21

x1,2 = +4 ± 16 +128 2

x1,2 = +4 ± 144 2

x1 = 4 + 144 2 = 4 +12 2 = 16 2 = 8

x2 = 4 - 144 2 = 4 -12 2 = -8 2 = -4

L={ -4 ; 8 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -4 |0) und N2( 8 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2x -2
und
g(x)= - x 2 -5x -4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2x -2 = - x 2 -5x -4 | + x 2 +5x +4

x 2 +3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · 2 21

x1,2 = -3 ± 9 -8 2

x1,2 = -3 ± 1 2

x1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

x2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

L={ -2 ; -1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = - ( -2 ) 2 -5( -2 ) -4 = -4 +10 -4 = 2

g( -1 ) = - ( -1 ) 2 -5( -1 ) -4 = -1 +5 -4 = 0

Die Schnittpunkte sind also S1( -2 | 2 ) und S2( -1 |0).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 - 3 2 x +23 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 2 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= - 1 2 .

Der Term der abgebildeten Geraden ist also y= - 1 2 x +3 oder f(x)= - 1 2 x +3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- 1 2 x +3 = - x 2 - 3 2 x +23 |⋅ 2
2( - 1 2 x +3 ) = 2( - x 2 - 3 2 x +23 )
-x +6 = -2 x 2 -3x +46 | +2 x 2 +3x -46
2 x 2 +2x -40 = 0 |:2

x 2 + x -20 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -20 ) 21

x1,2 = -1 ± 1 +80 2

x1,2 = -1 ± 81 2

x1 = -1 + 81 2 = -1 +9 2 = 8 2 = 4

x2 = -1 - 81 2 = -1 -9 2 = -10 2 = -5

L={ -5 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = - ( -5 ) 2 - 3 2 ( -5 ) +23 = -25 + 15 2 +23 = 11 2

g( 4 ) = - 4 2 - 3 2 4 +23 = -16 -6 +23 = 1

Die Schnittpunkte sind also S1( -5 | 11 2 ) und S2( 4 | 1 ).