Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 +22x +60 = 0

Lösung einblenden
2 x 2 +22x +60 = 0 |:2

x 2 +11x +30 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -11 ± 11 2 -4 · 1 · 30 21

x1,2 = -11 ± 121 -120 2

x1,2 = -11 ± 1 2

x1 = -11 + 1 2 = -11 +1 2 = -10 2 = -5

x2 = -11 - 1 2 = -11 -1 2 = -12 2 = -6

L={ -6 ; -5 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

16 x 2 +16x +4 = 0

Lösung einblenden
16 x 2 +16x +4 = 0 |:4

4 x 2 +4x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 4 · 1 24

x1,2 = -4 ± 16 -16 8

x1,2 = -4 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 8 = - 1 2

L={ - 1 2 }

- 1 2 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 +3x +2 = 0

Lösung einblenden

x 2 +3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · 2 21

x1,2 = -3 ± 9 -8 2

x1,2 = -3 ± 1 2

x1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

x2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

L={ -2 ; -1 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-2 x 2 -9x -8 = ( -3x +4 ) ( x -9 ) -40x +29

Lösung einblenden
-2 x 2 -9x -8 = ( -3x +4 ) ( x -9 ) -40x +29
-2 x 2 -9x -8 = -3 x 2 +31x -36 -40x +29
-2 x 2 -9x -8 = -3 x 2 -9x -7 | +8
-2 x 2 -9x = -3 x 2 -9x +1 | +3 x 2 +9x
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

L={ -1 ; 1 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -2 x 2 +20x -18 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-2 x 2 +20x -18 = 0 |:2

- x 2 +10x -9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -10 ± 10 2 -4 · ( -1 ) · ( -9 ) 2( -1 )

x1,2 = -10 ± 100 -36 -2

x1,2 = -10 ± 64 -2

x1 = -10 + 64 -2 = -10 +8 -2 = -2 -2 = 1

x2 = -10 - 64 -2 = -10 -8 -2 = -18 -2 = 9

L={ 1 ; 9 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( 1 |0) und N2( 9 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 3 x 2 +3x +1
und
g(x)= 2 x 2 +5x +4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3 x 2 +3x +1 = 2 x 2 +5x +4 | -2 x 2 -5x -4

x 2 -2x -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

x1,2 = +2 ± 4 +12 2

x1,2 = +2 ± 16 2

x1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

x2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

L={ -1 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -1 ) = 2 ( -1 ) 2 +5( -1 ) +4 = 21 -5 +4 = 2 -5 +4 = 1

g( 3 ) = 2 3 2 +53 +4 = 29 +15 +4 = 18 +15 +4 = 37

Die Schnittpunkte sind also S1( -1 | 1 ) und S2( 3 | 37 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + 13 2 x -7 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 2 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= - 1 2 .

Der Term der abgebildeten Geraden ist also y= - 1 2 x +3 oder f(x)= - 1 2 x +3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- 1 2 x +3 = - x 2 + 13 2 x -7 |⋅ 2
2( - 1 2 x +3 ) = 2( - x 2 + 13 2 x -7 )
-x +6 = -2 x 2 +13x -14 | +2 x 2 -13x +14
2 x 2 -14x +20 = 0 |:2

x 2 -7x +10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 10 21

x1,2 = +7 ± 49 -40 2

x1,2 = +7 ± 9 2

x1 = 7 + 9 2 = 7 +3 2 = 10 2 = 5

x2 = 7 - 9 2 = 7 -3 2 = 4 2 = 2

L={ 2 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 2 ) = - 2 2 + 13 2 2 -7 = -4 +13 -7 = 2

g( 5 ) = - 5 2 + 13 2 5 -7 = -25 + 65 2 -7 = 1 2

Die Schnittpunkte sind also S1( 2 | 2 ) und S2( 5 | 1 2 ).