Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

5 x 2 -15x +10 = 0

Lösung einblenden
5 x 2 -15x +10 = 0 |:5

x 2 -3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

x1,2 = +3 ± 9 -8 2

x1,2 = +3 ± 1 2

x1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

x2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

L={ 1 ; 2 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

3 +2 x 2 -7x = 0

Lösung einblenden

2 x 2 -7x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +7 ± ( -7 ) 2 -4 · 2 · 3 22

x1,2 = +7 ± 49 -24 4

x1,2 = +7 ± 25 4

x1 = 7 + 25 4 = 7 +5 4 = 12 4 = 3

x2 = 7 - 25 4 = 7 -5 4 = 2 4 = 0,5

L={ 0,5 ; 3 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 - 38 5 x - 16 5 = 0

Lösung einblenden
x 2 - 38 5 x - 16 5 = 0 |⋅ 5
5( x 2 - 38 5 x - 16 5 ) = 0

5 x 2 -38x -16 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +38 ± ( -38 ) 2 -4 · 5 · ( -16 ) 25

x1,2 = +38 ± 1444 +320 10

x1,2 = +38 ± 1764 10

x1 = 38 + 1764 10 = 38 +42 10 = 80 10 = 8

x2 = 38 - 1764 10 = 38 -42 10 = -4 10 = -0,4

L={ -0,4 ; 8 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-3 x 2 -4x +5 = ( -4x +3 ) ( x +9 ) +28x -20

Lösung einblenden
-3 x 2 -4x +5 = ( -4x +3 ) ( x +9 ) +28x -20
-3 x 2 -4x +5 = -4 x 2 -33x +27 +28x -20
-3 x 2 -4x +5 = -4 x 2 -5x +7 | +4 x 2 +5x -7

x 2 + x -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

x1,2 = -1 ± 1 +8 2

x1,2 = -1 ± 9 2

x1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

x2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

L={ -2 ; 1 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -11x +18 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -11x +18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +11 ± ( -11 ) 2 -4 · 1 · 18 21

x1,2 = +11 ± 121 -72 2

x1,2 = +11 ± 49 2

x1 = 11 + 49 2 = 11 +7 2 = 18 2 = 9

x2 = 11 - 49 2 = 11 -7 2 = 4 2 = 2

L={ 2 ; 9 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( 2 |0) und N2( 9 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 4 x 2 +9x +26
und
g(x)= 3 x 2 - x +1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

4 x 2 +9x +26 = 3 x 2 - x +1 | -3 x 2 + x -1

x 2 +10x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -10 ± 10 2 -4 · 1 · 25 21

x1,2 = -10 ± 100 -100 2

x1,2 = -10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 2 = -5

L={ -5 }

-5 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = 3 ( -5 ) 2 - ( -5 ) +1 = 325 +5 +1 = 75 +5 +1 = 81

Der einzige Schnittpunkt ist also S( -5 | 81 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 +7x -8 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=1.

Der Term der abgebildeten Geraden ist also y= x +1 oder f(x)= x +1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x +1 = - x 2 +7x -8 | + x 2 -7x +8

x 2 -6x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 9 21

x1,2 = +6 ± 36 -36 2

x1,2 = +6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 6 2 = 3

L={ 3 }

3 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = - 3 2 +73 -8 = -9 +21 -8 = 4

Der einzige Schnittpunkt ist also S( 3 | 4 ).