Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

5 x 2 -35x -90 = 0

Lösung einblenden
5 x 2 -35x -90 = 0 |:5

x 2 -7x -18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · ( -18 ) 21

x1,2 = +7 ± 49 +72 2

x1,2 = +7 ± 121 2

x1 = 7 + 121 2 = 7 +11 2 = 18 2 = 9

x2 = 7 - 121 2 = 7 -11 2 = -4 2 = -2

L={ -2 ; 9 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

2x +1 + x 2 = 0

Lösung einblenden

x 2 +2x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · 1 21

x1,2 = -2 ± 4 -4 2

x1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -2 2 = -1

L={ -1 }

-1 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

-2 x 2 -24x -72 = 0

Lösung einblenden
-2 x 2 -24x -72 = 0 |:2

- x 2 -12x -36 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +12 ± ( -12 ) 2 -4 · ( -1 ) · ( -36 ) 2( -1 )

x1,2 = +12 ± 144 -144 -2

x1,2 = +12 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 12 -2 = -6

L={ -6 }

-6 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

9 x 2 -5x -1 = ( 8x -6 ) ( x +8 ) -67x +47

Lösung einblenden
9 x 2 -5x -1 = ( 8x -6 ) ( x +8 ) -67x +47
9 x 2 -5x -1 = 8 x 2 +58x -48 -67x +47
9 x 2 -5x -1 = 8 x 2 -9x -1 | +1
9 x 2 -5x = 8 x 2 -9x | - ( 8 x 2 -9x )
9 x 2 -8 x 2 -5x +9x = 0
x 2 +4x = 0
x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

L={ -4 ; 0}

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 + 3 2 x - 5 2 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 + 3 2 x - 5 2 = 0 |⋅ 2
2( x 2 + 3 2 x - 5 2 ) = 0

2 x 2 +3x -5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 2 · ( -5 ) 22

x1,2 = -3 ± 9 +40 4

x1,2 = -3 ± 49 4

x1 = -3 + 49 4 = -3 +7 4 = 4 4 = 1

x2 = -3 - 49 4 = -3 -7 4 = -10 4 = -2,5

L={ -2,5 ; 1 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -2,5 |0) und N2( 1 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 5 x 2 -4x +1
und
g(x)= 4 x 2 -2x -1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

5 x 2 -4x +1 = 4 x 2 -2x -1 | -4 x 2 +2x +1

x 2 -2x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · 2 21

x1,2 = +2 ± 4 -8 2

x1,2 = +2 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

Es gibt also keine Schnittpunkte.

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 +6x -7 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=-1.

Der Term der abgebildeten Geraden ist also y= -x +3 oder f(x)= -x +3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-x +3 = - x 2 +6x -7 | + x 2 -6x +7

x 2 -7x +10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 10 21

x1,2 = +7 ± 49 -40 2

x1,2 = +7 ± 9 2

x1 = 7 + 9 2 = 7 +3 2 = 10 2 = 5

x2 = 7 - 9 2 = 7 -3 2 = 4 2 = 2

L={ 2 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 2 ) = - 2 2 +62 -7 = -4 +12 -7 = 1

g( 5 ) = - 5 2 +65 -7 = -25 +30 -7 = -2

Die Schnittpunkte sind also S1( 2 | 1 ) und S2( 5 | -2 ).