Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

4 x 2 +24x +36 = 0

Lösung einblenden
4 x 2 +24x +36 = 0 |:4

x 2 +6x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · 1 · 9 21

x1,2 = -6 ± 36 -36 2

x1,2 = -6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -6 2 = -3

L={ -3 }

-3 ist 2-fache Lösung!

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

16 x 2 -64x = -64

Lösung einblenden
16 x 2 -64x = -64 | +64
16 x 2 -64x +64 = 0 |:16

x 2 -4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 4 21

x1,2 = +4 ± 16 -16 2

x1,2 = +4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 4 2 = 2

L={ 2 }

2 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 + x -20 = 0

Lösung einblenden

x 2 + x -20 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -20 ) 21

x1,2 = -1 ± 1 +80 2

x1,2 = -1 ± 81 2

x1 = -1 + 81 2 = -1 +9 2 = 8 2 = 4

x2 = -1 - 81 2 = -1 -9 2 = -10 2 = -5

L={ -5 ; 4 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-2 x 2 -3x +5 = ( -3x -4 ) ( x -6 ) -13x -19

Lösung einblenden
-2 x 2 -3x +5 = ( -3x -4 ) ( x -6 ) -13x -19
-2 x 2 -3x +5 = -3 x 2 +14x +24 -13x -19
-2 x 2 -3x +5 = -3 x 2 + x +5 | -5
-2 x 2 -3x = -3 x 2 + x | - ( -3 x 2 + x )
-2 x 2 +3 x 2 -3x - x = 0
x 2 -4x = 0
x ( x -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -4 = 0 | +4
x2 = 4

L={0; 4 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 + 11 2 x +7 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 + 11 2 x +7 = 0 |⋅ 2
2( x 2 + 11 2 x +7 ) = 0

2 x 2 +11x +14 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -11 ± 11 2 -4 · 2 · 14 22

x1,2 = -11 ± 121 -112 4

x1,2 = -11 ± 9 4

x1 = -11 + 9 4 = -11 +3 4 = -8 4 = -2

x2 = -11 - 9 4 = -11 -3 4 = -14 4 = -3,5

L={ -3,5 ; -2 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -3,5 |0) und N2( -2 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 6 x 2 +6x -11
und
g(x)= 5 x 2 +5x +1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

6 x 2 +6x -11 = 5 x 2 +5x +1 | -5 x 2 -5x -1

x 2 + x -12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -12 ) 21

x1,2 = -1 ± 1 +48 2

x1,2 = -1 ± 49 2

x1 = -1 + 49 2 = -1 +7 2 = 6 2 = 3

x2 = -1 - 49 2 = -1 -7 2 = -8 2 = -4

L={ -4 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = 5 ( -4 ) 2 +5( -4 ) +1 = 516 -20 +1 = 80 -20 +1 = 61

g( 3 ) = 5 3 2 +53 +1 = 59 +15 +1 = 45 +15 +1 = 61

Die Schnittpunkte sind also S1( -4 | 61 ) und S2( 3 | 61 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + 5 2 x +4 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 2 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= 1 2 .

Der Term der abgebildeten Geraden ist also y= 1 2 x +1 oder f(x)= 1 2 x +1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

1 2 x +1 = - x 2 + 5 2 x +4 |⋅ 2
2( 1 2 x +1 ) = 2( - x 2 + 5 2 x +4 )
x +2 = -2 x 2 +5x +8 | +2 x 2 -5x -8
2 x 2 -4x -6 = 0 |:2

x 2 -2x -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

x1,2 = +2 ± 4 +12 2

x1,2 = +2 ± 16 2

x1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

x2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

L={ -1 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -1 ) = - ( -1 ) 2 + 5 2 ( -1 ) +4 = -1 - 5 2 +4 = 1 2

g( 3 ) = - 3 2 + 5 2 3 +4 = -9 + 15 2 +4 = 5 2

Die Schnittpunkte sind also S1( -1 | 1 2 ) und S2( 3 | 5 2 ).